Benchmarking your ICU’s feeding performance: How early is early?

Dr Gordon S. Doig,
Associate Professor in Intensive Care,
Northern Clinical School Intensive Care Research Unit,
University of Sydney, Sydney, Australia
www.EvidenceBased.net/Research
gdoig@med.usyd.edu.au

© 2013, University of Sydney, Not for reproduction or distribution without permission.
Overview

• Review of the evidence regarding early nutrition therapy.

• Brief review of major guidelines recommending early nutrition therapy.

• Understand current practice.

• Develop a simple and effective practice change strategy.
 1) Understand the evidence
 2) Conduct an audit
 3) Provide feedback: Academic detailing
 4) Add tincture of time.
 5) Repeat steps 2, 3 and 4 as required.

• Summary.
The initial MEDLINE/EMBASE electronic search retrieved 2,287 abstracts. Hand-searching of abstracts and reference lists of all overviews and guidelines (GSD and FS) resulted in the retrieval of 465 papers. Of these 465 papers, 337 appeared to be primary nutritional support studies and were identified for detailed review (GSD, FS, and AD). On detailed review 103 studies were found not to report any clinically meaningful outcomes, 42 were not conducted in critically ill patients, 27 were not primary nutritional support studies (i.e., evaluations of recombinant human growth hormone, insulin), 15 were crossover studies, 12 evaluated preoperative interventions, 8 were true observational studies (not controlled trials), 7 were non-English-language studies, 6 were pseudo-randomized, 5 were based on subgroups of patients from a larger published trial, and 1 was a postoperative intervention (oral intake for 10 weeks postsurgery). The remaining 111 articles were found to be primary nutritional support studies reporting clinically meaningful outcomes (11) conducted in critically ill patient populations. A complete listing of all 111 articles is presented in Appendix A.

The initial MEDLINE/EMBASE electronic search retrieved 2,287 abstracts. Hand-searching of abstracts and reference lists of all overviews and guidelines (GSD and FS) resulted in the retrieval of 465 papers. Of these 465 papers, 337 appeared to be primary nutritional support studies and were identified for detailed review (GSD, FS, and AD). On detailed review 103 studies were found not to report any clinically meaningful outcomes, 42 were not conducted in critically ill patients, 27 were not primary nutritional support studies (i.e., evaluations of recombinant human growth hormone, insulin), 15 were crossover studies, 12 evaluated preoperative interventions, 8 were true observational studies (not controlled trials), 7 were non-English-language studies, 6 were pseudo-randomized, 5 were based on subgroups of patients from a larger published trial, and 1 was a postoperative intervention (oral intake for 10 weeks postsurgery). The remaining 111 articles were found to be primary nutritional support studies reporting clinically meaningful outcomes (11) conducted in critically ill patient populations. A complete listing of all 111 articles is presented in Appendix A.

The initial MEDLINE/EMBASE electronic search retrieved 2,287 abstracts. Hand-searching of abstracts and reference lists of all overviews and guidelines (GSD and FS) resulted in the retrieval of 465 papers. Of these 465 papers, 337 appeared to be primary nutritional support studies and were identified for detailed review (GSD, FS, and AD). On detailed review, 103 studies were found not to report any clinically meaningful outcomes, 42 were not conducted in critically ill patients, 27 were not primary nutritional support studies (i.e., evaluations of recombinant human growth hormone, insulin), 15 were crossover studies, 12 evaluated preoperative interventions, 8 were true observational studies (not controlled trials), 7 were non-English-language studies, 6 were pseudo-randomized, 5 were based on subgroups of patients from a larger published trial, and 1 was a postoperative intervention (oral intake for 10 weeks postsurgery). The remaining 111 articles were found to be primary nutritional support studies reporting clinically meaningful outcomes (11) conducted in critically ill patient populations. A complete listing of all 111 articles is presented in Appendix A.

Box. Evidence-Based Recommendations Approved (Ratified) for Inclusion in the Guideline at the Consensus Conference

Grade B+

Recommendation favoring enteral nutrition over standard care (nothing by mouth)

Recommendation favoring early parenteral nutrition (<24 hours) over delayed (>24 hours) enteral nutrition

5 Level II RCTs. Supported by positive meta-analysis and validated evidence-based guideline (ACCEPT).

Grade B

Recommendation favoring early enteral nutrition (<24 hours) over delayed (>24 hours) enteral nutrition

3 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring parenteral nutrition over standard care (intravenous glucose)

5 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring early enteral nutrition (<24 hours) over parenteral nutrition

6 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring postpyloric feeding when gastric feeding not tolerated

8 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring prokinetics when gastric feeding not tolerated

5 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring enteral nutrition supplemented with parenteral nutrition if 80% of goals not met by 72 hours with enteral nutrition alone (after consideration of postpyloric feeding, prokinetics, or both)

4 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring protocolized management of diarrhea

Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring protocolized definition of intolerance of enteral nutrition, which includes gastric residual values > 200 mL

Supported by validated evidence-based guideline (ACCEPT).

Grade B−

Consider parenteral nutrition with glutamine instead of standard parenteral nutrition

4 Level II RCTs. Supported by meta-analysis, heterogeneity present.

Glutamine may be beneficial in select patients. To identify which patients may benefit, each constituent RCT should be reviewed and clinical judgment should be exercised.

Box. Evidence-Based Recommendations Approved (Ratified) for Inclusion in the Guideline at the Consensus Conference

Grade B+
Recommendation favoring enteral nutrition over standard care (nothing by mouth)
- 5 Level II randomized controlled trials (RCTs). Supported by positive meta-analysis and validated evidence-based guideline (EBG) Algorithms for Critical Care Enteral and Parenteral Therapy (ACCEPT) trial.

Recommendation favoring early parenteral nutrition (<24 hours) over delayed (>24 hours) enteral nutrition
- 5 Level II RCTs. Supported by positive meta-analysis and validated evidence-based guideline (ACCEPT).

Grade B
Recommendation favoring early enteral nutrition (<24 hours) over delayed (>24 hours) enteral nutrition
- 3 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring parenteral nutrition over standard care (intravenous glucose)
- 5 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring early enteral nutrition (<24 hours) over parenteral nutrition
- 6 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring postpyloric feeding when gastric feeding not tolerated
- 8 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring prokinetics when gastric feeding not tolerated
- 5 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring enteral nutrition supplemented with parenteral nutrition if 80% of goals not met by 72 hours with enteral nutrition alone (after consideration of postpyloric feeding, prokinetics, or both)
- 4 Level II RCTs. Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring protocolized management of diarrhea
Supported by validated evidence-based guideline (ACCEPT).

Recommendation favoring protocolized definition of intolerance of enteral nutrition, which includes gastric residual values > 200 mL
Supported by validated evidence-based guideline (ACCEPT).

Grade B-
Consider parenteral nutrition with glutamine instead of standard parenteral nutrition
- 4 Level II RCTs. Supported by meta-analysis, heterogeneity present.

Glutamine may be beneficial in select patients. To identify which patients may benefit, each constituent RCT should be reviewed and clinical judgment should be exercised.
The initial MEDLINE/EMBASE retrieved 2,287 abstracts. Handsearching, searched reference lists of all over 465 papers, resulted in the final 111. Of these 465 papers, 337 apprievalnt support studies and reviews (GSD and FS), 103 studies were found not to have meaningful outcomes, 42 were critically ill patients, 27 were support studies (i.e., evaluation of growth hormone, insulin, etc.), 15 evaluated preoperative intervention and 15 evaluated preoperative intervention. English-language studies, 6 were based on subgroups of published data, 11 was a postoperative trial, 10 articles found to be prioritized, 111 articles were found to be prioritized, 111 articles were found to be prioritized, and a complete listing of all 111 articles is included.

Box. Evidence-Based Recommendations Approved (Ratified) for Inclusion in the Guideline at the Consensus Conference

Grade B+

- Recommendation favoring enteral nutrition over standard care (nothing by mouth)
 - 5 Level II randomized controlled trials (RCTs). Supported by positive meta-analysis and validated evidence-based guideline (EBG) (Algorithm for Critical Care Enteral and Parenteral Therapy (ACCP) trial).
 - Recommendation favoring early parenteral nutrition (**< 24 hours**), over delayed (**>24 hours**) enteral nutrition
 - 5 Level II RCTs. Supported by positive meta-analysis and validated evidence-based guideline (ACCP).

Grade B

- Recommendation favoring early enteral nutrition (**< 24 hours**), over delayed (**>24 hours**) enteral nutrition
 - 3 Level II RCTs. Supported by validated evidence-based guideline (ACCP).
Primary analysis

- Included only methodologically sound RCTs.

early (< 24 h) EN: updated meta-analysis

Primary analysis

- Included only methodologically sound RCTs.

Simulation analysis

- Duplicated Heyland’s 2003 selection and analysis process, but only included trials where EN was initiated within 24 h of injury or ICU admission.

Potentially relevant papers identified and retrieved (N = 675)

Papers excluded, with reasons (N = 170)
Not RCTs (Letters, observational studies, systematic reviews, narrative reviews, previous meta-analyses)

RCTs identified for detailed evaluation (N = 505)

RCTs excluded, with reasons (N = 475)
329 Did not provide a primary comparison of timing of EN (includes 5 pseudo-randomised trials + 99 trials not reporting clinically meaningful outcomes)
72 Not adult critically ill population
46 Not primary nutritional support intervention (GH etc)
16 Cross-over trials
13 Pre-operative interventions

RCTs evaluating timing of EN (N = 30)

Excluded RCTs (N = 24)
7 - Early EN not started within 24 h of injury or ICU admission
4 - Patient oriented outcomes not reported (no mortality etc)
5 - Not critically ill patient population
2 - Early post-op oral intake, not early EN
2 - EN commenced at same time in both groups
1 - Immuno-enhanced EN (Impact)
2 - Excessive loss to follow-up
1 - Subgroup from a larger trial

Included in primary analysis (N = 6)
Results: Primary MA, mortality

Review: Early EN (<24h) vs Control (Primary Analysis)
Comparison: 01 early EN vs Control
Outcome: 01 Mortality, Intention to treat analysis

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>early EN (<24 h) n/N</th>
<th>Control n/N</th>
<th>OR (fixed) 95% CI</th>
<th>Weight %</th>
<th>OR (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli 1990</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0/17</td>
<td>2/19</td>
<td>13.40 0.20 [0.01, 4.47]</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0/27</td>
<td>1/25</td>
<td>8.89 0.30 [0.01, 7.63]</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6/14</td>
<td>6/14</td>
<td>19.95 1.00 [0.22, 4.47]</td>
<td>39.38</td>
<td>0.11 [0.01, 0.99]</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1/21</td>
<td>3/17</td>
<td>18.38 0.23 [0.02, 2.48]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupelis 2001</td>
<td>1/30</td>
<td>7/30</td>
<td>39.38 0.11 [0.01, 0.99]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>119</td>
<td>115</td>
<td>100.00 0.34 [0.14, 0.85]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 8 (early EN (<24 h)), 19 (Control)
Test for heterogeneity: Chi² = 3.20, df = 4 (P = 0.52), I² = 0%
Test for overall effect: Z = 2.31 (P = 0.02)

- Significant reduction in mortality (10% absolute reduction, P=0.02)

Results: Primary MA, Pneumonia

- Significant reduction in pneumonia (27% absolute reduction, \(P=0.01 \))

• We conducted a *simulation study* to test the appropriateness of key assumptions behind our study selection and analysis techniques.

• We duplicated Heyland’s 2003 MA,
 – we used Heyland’s selection process and analysis techniques
 – BUT we only included articles that provided EN within 24 h of injury or ICU admission

Simulation study: Heyland’s 2003 MA

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h) n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td></td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14</td>
<td>11.14</td>
<td>0.27 [0.03, 2.37]</td>
</tr>
<tr>
<td>Eyer</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27</td>
<td>15.27</td>
<td>1.00 [0.16, 6.38]</td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39</td>
<td>5.39</td>
<td>0.33 [0.01, 7.55]</td>
</tr>
<tr>
<td>Minard</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42</td>
<td>12.42</td>
<td>0.31 [0.04, 2.44]</td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51</td>
<td>9.51</td>
<td>0.48 [0.05, 5.07]</td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70</td>
<td>12.70</td>
<td>0.14 [0.02, 1.09]</td>
</tr>
<tr>
<td>Singh</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57</td>
<td>33.57</td>
<td>1.05 [0.30, 3.66]</td>
</tr>
</tbody>
</table>

Total (95% CI) 159 158

Total events: 10 (Early EN (<60 h)), 23 (Control)
Test for heterogeneity: Chi² = 4.05, df = 6 (P = 0.67), I² = 0%
Test for overall effect: Z = 1.76 (P = 0.08)

- **Trend** towards a reduction in mortality (8% absolute reduction, P=0.08)

Simulation study: Heyland’s 2003 MA

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h) n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td></td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14</td>
<td></td>
<td>0.27 [0.03, 2.37]</td>
</tr>
<tr>
<td>Eyer</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27</td>
<td></td>
<td>1.00 [0.16, 6.38]</td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39</td>
<td></td>
<td>0.33 [0.01, 7.55]</td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42</td>
<td></td>
<td>0.31 [0.04, 2.44]</td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51</td>
<td></td>
<td>0.48 [0.05, 5.07]</td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70</td>
<td></td>
<td>0.14 [0.02, 1.09]</td>
</tr>
<tr>
<td>Singh</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57</td>
<td></td>
<td>1.05 [0.30, 3.66]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>159</td>
<td>158</td>
<td></td>
<td>100.00</td>
<td>0.52 [0.25, 1.08]</td>
</tr>
</tbody>
</table>

- **Total events:** 10 (Early EN (<60 h)), 23 (Control)
- Test for heterogeneity: $\chi^2 = 4.05$, df = 6 ($P = 0.67$), $I^2 = 0\%$
- Test for overall effect: $Z = 1.76$ ($P = 0.08$)

- **Trend** towards a reduction in mortality (8% absolute reduction, $P=0.08$)

Simulation study: Heyland’s 2003 MA

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h) n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14 0.27 [0.03, 2.37]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyer</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27 1.00 [0.16, 6.38]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39 0.33 [0.01, 7.55]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42 0.31 [0.04, 2.44]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51 0.48 [0.05, 5.07]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70 0.14 [0.02, 1.09]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh (<48 h)</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57 1.05 [0.30, 3.66]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>159</td>
<td>158</td>
<td>100.00 0.52 [0.25, 1.08]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: Chi² = 4.05, df = 6 (P = 0.67), I² = 0%
Test for overall effect: Z = 1.76 (P = 0.08)

- **Trend** towards a reduction in mortality (8% absolute reduction, P=0.08)

Simulation study: Heyland’s 2003 MA

Review:
Heyland Early EN

Comparison:
01 Mortality

Outcome:
01 Mortality

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h)</th>
<th>Control</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>2/19</td>
<td>3/17</td>
<td>11.14</td>
<td>0.27</td>
<td>[0.03, 2.37]</td>
</tr>
<tr>
<td>Eyer (average time to early EN: 31 h)</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27</td>
<td>1.00</td>
<td>[0.16, 6.38]</td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39</td>
<td>0.33</td>
<td>[0.01, 7.55]</td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42</td>
<td>0.31</td>
<td>[0.04, 2.44]</td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51</td>
<td>0.48</td>
<td>[0.05, 5.07]</td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70</td>
<td>0.14</td>
<td>[0.02, 1.09]</td>
</tr>
<tr>
<td>Singh (<48 h)</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57</td>
<td>1.05</td>
<td>[0.30, 3.66]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>159</td>
<td>158</td>
<td>100.00</td>
<td>0.52</td>
<td>[0.25, 1.08]</td>
</tr>
</tbody>
</table>

Total events: 10 (Early EN (<60 h)), 23 (Control)

- Test for heterogeneity: Chi² = 4.05, df = 6 (P = 0.67), I² = 0%
- Test for overall effect: Z = 1.76 (P = 0.08)

- **Trend** towards a reduction in mortality (8% absolute reduction, P=0.08)

Simulation study: Heyland’s 2003 MA

Review: Heyland Early EN
Comparison: 01 Mortality
Outcome: 01 Mortality

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h)</th>
<th>Control</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14</td>
<td>0.27</td>
<td>[0.03, 2.37]</td>
</tr>
<tr>
<td>Eyer (average time to early EN: 31 h)</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27</td>
<td>1.00</td>
<td>[0.16, 6.38]</td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39</td>
<td>0.33</td>
<td>[0.01, 7.55]</td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42</td>
<td>0.31</td>
<td>[0.04, 2.44]</td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51</td>
<td>0.48</td>
<td>[0.05, 5.07]</td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70</td>
<td>0.14</td>
<td>[0.02, 1.09]</td>
</tr>
<tr>
<td>Singh (<48 h)</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57</td>
<td>1.05</td>
<td>[0.30, 3.66]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>107</td>
<td>102</td>
<td></td>
<td>100.00</td>
<td>0.26 [0.08, 0.83]</td>
</tr>
<tr>
<td>Total events:</td>
<td>3 (Early EN (<60 h)), 13 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: Chi² = 0.64, df = 3 (P = 0.89), I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.27 (P = 0.02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant reduction in mortality (10% absolute reduction, P=0.02)

Therefore, evidence of benefit has been present in our literature since at least 2003, if early EN is defined as < 24 h from admission or injury!!!
Background: Review of the Guidelines

Five major clinical practice guidelines recommend *early* EN.
Background: Review of the Guidelines

Five major clinical practice guidelines recommend early EN.

- Canadian guideline,

Five major clinical practice guidelines recommend *early* EN.

- **Canadian guideline,**
- **ACCEPT guideline (also Canadian),**
Five major clinical practice guidelines recommend early EN.

- Canadian guideline,
- ACCEPT guideline (also Canadian),
- Australian and New Zealand guideline,
Background: Review of the Guidelines

Five major clinical practice guidelines recommend early EN.

- **Canadian guideline,**
- **ACCEPT guideline (also Canadian),**
- **Australian and New Zealand guideline,**
- **European (ESPEN) guideline and**

Background: Review of the Guidelines

Five major clinical practice guidelines recommend early EN.

- Canadian guideline,
- ACCEPT guideline (also Canadian),
- Australian and New Zealand guideline,
- European (ESPEN) guideline and
- American (ASPEN and SCCM) guideline

Background: Review of the Guidelines

Five major clinical practice guidelines recommend early EN.

- Canadian guideline,
- ACCEPT guideline (also Canadian),
- Australian and New Zealand guideline,
- European (ESPEN) guideline and
- American (ASPEN and SCCM) guideline
Background: Review of the Guidelines

Five major clinical practice guidelines recommend early EN.

- **Canadian guideline,**
- **ACCEPT guideline (also Canadian),** \(< 24 \text{ h}\)
- **Australian and New Zealand guideline,** \(< 24 \text{ h}\)
- **European (ESPEN) guideline and**
- **American (ASPEN and SCCM) guideline**

Significant evidence.

Background: Review of the Guidelines

Five major clinical practice guidelines recommend *early* EN.

- **Canadian guideline**, < 48 h
- **ACCEPT guideline (also Canadian)**, < 24 h
- **Australian and New Zealand guideline**, < 24 h
- **European (ESPEN) guideline and**, < 24 h
- **American (ASPEN and SCCM) guideline**, < 48 h

Evidence of trend.

Significant evidence.

Significant evidence.

Significant evidence.

Evidence of trend.

Global practice: Do we deliver early EN?
Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

- 65% of patients who received EN were started within 48 h

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

- 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

- 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):

- Standard care ANZ patients (13 ICUs):

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

• 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):

• Standard care ANZ patients (13 ICUs):

 • 69.1% of patients who received EN were started within 48 h

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

• 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):

• Standard care ANZ patients (13 ICUs):
 • 69.1% of patients who received EN were started within 48 h
• Active Nutrition Guideline Implementation (14 ICUs):

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

- 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):

- Standard care ANZ patients (13 ICUs):
 - 69.1% of patients who received EN were started within 48 h
- Active Nutrition Guideline Implementation (14 ICUs):
 - 72.1% of patients who received EN were started within 48 h

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

- 24 h metric not reported
- 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):

- Standard care ANZ patients (13 ICUs):
 - 69.1% of patients who received EN were started within 48 h
- Active Nutrition Guideline Implementation (14 ICUs):
 - 72.1% of patients who received EN were started within 48 h

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

- 24 h metric not reported
- 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):

- Standard care ANZ patients (13 ICUs):
 - 46.6% of patients who received EN were started within 24 h
 - 69.1% of patients who received EN were started within 48 h
- Active Nutrition Guideline Implementation (14 ICUs):
 - 72.1% of patients who received EN were started within 48 h

Global practice: Do we deliver early EN?

Survey of 1,637 patients from 81 ICUs in 18 countries

• 24 h metric not reported
• 65% of patients who received EN were started within 48 h

Clinical trial of 1,118 patients from 27 ICUs in 2 countries (ANZ):
• Standard care ANZ patients (13 ICUs):
 • 46.6% of patients who received EN were started within 24 h
 • 69.1% of patients who received EN were started within 48 h
• Active Nutrition Guideline Implementation (14 ICUs):
 • 65.1% of patients who received EN were started within 24 h
 • 72.1% of patients who received EN were started within 48 h

Practice change in the ICU

Change management encompasses a broad set of theories and structured processes aimed at helping to transition individuals, teams and organisations from a current state to a desired future state.

Smith WR. Evidence for the effectiveness of techniques to change physician behavior. Chest 2000;118(2) Suppl :S8-S17S
Practice change in the ICU

Change management encompasses a broad set of theories and structured processes aimed at helping to transition individuals, teams and organisations from a current state to a desired future state.

Practice change strategies should be theory driven and evidence based.
- supported by evidence that proves the theory correct.

Smith WR. Evidence for the effectiveness of techniques to change physician behavior. Chest 2000;118(2) Suppl :8S-17S
Efficient and effective change

1) Understand the evidence.
 • Conduct a formal critical appraisal of methodological quality.
Efficient and effective change

1) Understand the evidence.

• Conduct a formal critical appraisal of methodological quality.
• Conduct a formal critical appraisal of the change potential of the evidence.
Properties of *new technology* that make it more likely to be adopted (*factors intrinsic to the evidence*):

Properties of new technology that make it more likely to be adopted (factors intrinsic to the evidence):

- the new technology can be demonstrated to be superior to the old technology.
Properties of *new technology* that make it more likely to be adopted (*factors intrinsic to the evidence*):

- the new technology can be demonstrated to be superior to the old technology
- the technology is relatively uncomplicated

Properties of *new technology* that make it more likely to be adopted (*factors intrinsic to the evidence*):

- the new technology can be demonstrated to be superior to the old technology
- the technology is relatively uncomplicated
- the technology can be tried with ease

Properties of *new technology* that make it more likely to be adopted (*factors intrinsic to the evidence*):

- the new technology can be demonstrated to be superior to the old technology
- the technology is relatively uncomplicated
- the technology can be tried with ease
- the user can observe others trying the technology

Properties of *new technology* that make it more likely to be adopted (*factors intrinsic to the evidence*):

- the new technology can be demonstrated to be superior to the old technology
- the technology is relatively uncomplicated
- the technology can be tried with ease
- the user can observe others trying the technology
- the technology supports existing beliefs

Properties of new technology that make it more likely to be adopted (factors intrinsic to the evidence):

- the new technology can be demonstrated to be superior to the old technology
- the technology is relatively uncomplicated
- the technology can be tried with ease
- the user can observe others trying the technology
- the technology supports existing beliefs

As a ‘new technology’, the evidence supporting Early EN (< 24 h) fulfills all the above criteria.

2) Conduct an Audit

• Review your own practice and your ICU’s practice over time.
2) Conduct an Audit

- Review your own practice and your ICU’s practice over time.
 - Identify your Innovators and Early Adopters.
 - They will serve as excellent examples for others to observe and gain experience from.
Efficient and effective change

2) Conduct an Audit

• Review your own practice and your ICU’s practice over time.

• Undertake an external comparison to similar hospitals.
 • Remember to use the correct metric: Early = within 24 h!!
Efficient and effective change

2) Conduct an Audit

• Review your own practice and your ICU’s practice over time.

• Undertake an external comparison to similar hospitals.
 • Remember to use the correct metric: Early = within 24 h!!
Efficient and effective change

2) Conduction an Audit

- Review your own practice and your ICU’s practice over time.

- Undertake an external comparison to similar hospitals.
 - *Remember to use the correct metric: Early = within 24 h!!*
2) Conduct an Audit

- Promotes awareness of the need for change.
- Allows clinicians to see ‘others’ using the new technology.
- Regarded as being a *moderately strong* motivator for change.

3) Provide feedback
Efficient and effective change

3) Provide feedback: Academic Detailing
Efficient and effective change

3) Provide feedback: Academic Detailing

Academic Detailing is the single most powerful way to change physician practice patterns when conducted *peer to peer.*

3) Provide feedback: Academic Detailing

Academic Detailing is the single most powerful way to change physician practice patterns when conducted *peer to peer*.

“*short, one-to-one* conversations between a detailer and a practitioner with the goal of persuading the detailee to change behavior through the provision of *useful information and evidence*”

Efficient and effective change

3) Provide feedback: Academic Detailing

Relies upon the clinical detailer to offer:

3) Provide feedback: Academic Detailing

Relies upon the clinical detailer to offer:

- their expertise and experience in a face-to-face meeting that encourages interactive learning

Efficient and effective change

3) Provide feedback: Academic Detailing

Relies upon the clinical detailer to offer:

- their expertise and experience in a face-to-face meeting that encourages interactive learning
- credible information in a user-friendly, concise manner with repetition of only a few major points

Efficient and effective change

3) Provide feedback: Academic Detailing

Relies upon the clinical detailer to offer:

- their expertise and experience in a face-to-face meeting that encourages interactive learning
- credible information in a user-friendly, concise manner with repetition of only a few major points
- an understanding of the practice setting and environment in which individual physicians practice

Efficient and effective change

3) Provide feedback: Academic Detailing

Relies upon the clinical detailer to offer:

- their expertise and experience in a face-to-face meeting that encourages interactive learning
- credible information in a user-friendly, concise manner with repetition of only a few major points
- an understanding of the practice setting and environment in which individual physicians practice
- and to some degree, an implicit bond of shared beliefs and attitudes

Efficient and effective change

4) Add tincture of time.

4) Add tincture of time.

Efficient and effective change

4) Add tincture of time.

Efficient and effective change

5) Repeat steps 2, 3 and 4 as required.
Efficient and effective change

5) Repeat steps 2, 3 and 4 as required.

Efficient and effective change: Recap

1) Understand the evidence

2) Conduct an audit

3) Provide feedback: Academic detailing

4) Add tincture of time.

5) Repeat steps 2, 3 and 4 as required.

The evidence supporting patient benefits from the provision of Early EN is robust if early is defined as < 24 h from ICU admission.

- meta-analyses demonstrate early EN may improve survival
- 3 out of 5 major guidelines recommend commencing EN within 24 h
- the remaining 2 major guidelines recommend commencing EN within 24 to 48 h
The evidence supporting patient benefits from the provision of Early EN is robust if early is defined as < 24 h from ICU admission.

- meta-analyses demonstrate early EN may improve survival
- 3 out of 5 major guidelines recommend commencing EN within 24 h
- the remaining 2 major guidelines recommend commencing EN within 24 to 48 h

Audits of current practice demonstrate only 46% of eligible patients receive EN within 24 h of ICU admission.
Summary

The evidence supporting patient benefits from the provision of Early EN is robust if early is defined as < 24 h from ICU admission.

- meta-analyses demonstrate early EN may improve survival
- 3 out of 5 major guidelines recommend commencing EN within 24 h
- the remaining 2 major guidelines recommend commencing EN within 24 to 48 h

Audits of current practice demonstrate only 46% of eligible patients receive EN within 24 h of ICU admission.

- effective use of change management strategies can improve this to 65% of eligible patients receiving EN within 24 h of ICU admission
The evidence supporting patient benefits from the provision of Early EN is robust if early is defined as < 24 h from ICU admission.

- meta-analyses demonstrate early EN may improve survival
- 3 out of 5 major guidelines recommend commencing EN within 24 h
- the remaining 2 major guidelines recommend commencing EN within 24 to 48 h

Audits of current practice demonstrate only 46% of eligible patients receive EN within 24 h of ICU admission.

- effective use of change management strategies can improve this to 65% of eligible patients receiving EN within 24 h of ICU admission

How is your ICU performing?
We would like to invite you to participate:

Nutrition Support in Critical Illness

This Audit of Nutrition Support in Critical Illness is being conducted by the University of Sydney’s Northern Clinical School Intensive Care Research Unit. The primary purpose of this project is to benchmark current practice within hospitals throughout the world in order to provide useful information to participating sites to support local quality improvement initiatives to achieve best practice targets. Click here for additional information about this project. After reading the additional information, if you would like to participate, contact Gordon S. Doig or Philippa F. Heighes.

This is a secure, password protected web site. Access is restricted to participating hospitals only.

[Login to secure site]

Using this site for the first time: You will need to install the most recent version of Java to use all features of this site. Click here to verify and update your browser’s version of Java.

Endorsed by:

Ignace

Sponsored in South Africa by:

Baxter

Sponsored in New Zealand by:

Baxter

Baxter

Baxter

Any questions or comments please contact: Gordon S. Doig

Implemanted and designed by Gordon Doig

Page last modified on 16 May 2003.

Your browser is: Microsoft Internet Explorer

MSIE Version 5 or higher: true

MSIE Version 6: false

MSIE Version 7 or higher: true

MSIE Version 7: false

Netscape / Mozilla Version 4 or higher: false

Your browser supports: JavaScript 1.3

1975
How is your ICU performing?

- A Global audit of time from ICU admission to commencing nutrition therapy.
How is your ICU performing?

- A Global audit of time from ICU admission to commencing nutrition therapy.
- Very simple data collection.
How is your ICU performing?

- A Global audit of time from ICU admission to commencing nutrition therapy.
- Very simple data collection.

Data Collection Form: ICU Nutrition Audit

Please record all patients remaining in your ICU at least 3 calendar days, who did not receive oral nutrition on day of ICU admit (Day 1) or the day after ICU admission (Day 2).

<table>
<thead>
<tr>
<th>Initials</th>
<th>Sequential Number</th>
<th>ICU Admission</th>
<th>Feeding Start or ICU discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>dd/mm/yy</td>
<td>24 h clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dd/mm/yy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 h clock</td>
</tr>
</tbody>
</table>

Type of Feeding Started
Select a number:
(1) Enteral Nutrition; (2) Parenteral Nutrition; (3) EN+PN; (4) Oral feeding; (5) No feeding started.
How is your ICU performing?

- A Global audit of time from ICU admission to commencing nutrition therapy.
- Very simple data collection.
How is your ICU performing?

• A Global audit of time from ICU admission to commencing nutrition therapy.

• Very simple data collection.

• Graphical feedback comparisons to other sites.
How is your ICU performing?

• A Global audit of time from ICU admission to commencing nutrition therapy.

• Very simple data collection.

• Graphical feedback comparisons to other sites.
How is your ICU performing?

- A Global audit of time from ICU admission to commencing nutrition therapy.
- Very simple data collection.
- Graphical feedback comparisons to other sites.

- If your data suggests you could improve practice, Phase II of the project will help you improve by providing you with a comprehensive change management strategy to focus on the aspect of nutrition therapy that needs change.

www.EvidenceBased.net/Nutrition
How is your ICU performing?

- A Global audit of time from ICU admission to commencing nutrition therapy.
- Very simple data collection.
- Graphical feedback comparisons to other sites.
- If your data suggests you could improve practice, Phase II of the project will help you improve by providing you with a comprehensive change management strategy to focus on the aspect of nutrition therapy that needs change.
- No costs involved (to you or your hospital).
Nutrition Support in Critical Illness

This Audit of Nutrition Support in Critical Illness is being conducted by the University of Sydney's Northern Clinical School Intensive Care Research Unit. The primary purpose of this project is to benchmark current practice within hospitals throughout the world in order to provide useful information to participating sites to support local quality improvement initiatives to achieve best practice targets. Click here for additional information about this project. After reading the additional information, if you would like to participate, contact Gordon S. Doig or Philippa T. Heighes.

This is a secure, password protected web site. Access is restricted to participating hospitals only.

[Login to secure site]

Using this site for the first time: You will need to install the most recent version of Java to use all features of this site. Click here to verify and update your browser's version of Java.

Endorsed by:

Sponsored by: