Early enteral nutrition in critical illness:
A full economic analysis using European costs

Dr Gordon S. Doig,
Associate Professor in Intensive Care,
Northern Clinical School Intensive Care Research Unit,
University of Sydney, Sydney, Australia
gadoig@med.usyd.edu.au
www.EvidenceBased.net

© 2013, Gordon S. Doig, University of Sydney
Not for distribution without permission.
Faculty Disclosures

Gordon S. Doig

Relevant financial relationships with a commercial interest:

• **Fresenius Kabi**, Academic Research Grants (Past), Consultant and Speaker’s Honoraria (Current)

• **Baxter Healthcare**, Academic Research Grant (Current), Consultant and Speaker’s Honoraria (Current)

• **Nestle Healthcare**, Academic Research Grant (Current), Consultant and Speaker’s Honoraria (Current)
Overview

- Short background on previous studies costing enteral nutrition

- Describe the current study
 - a large scale Monte Carlo simulation of stochastic model based on European costs

- Briefly review financial implications of providing early enteral nutrition to critically ill patients
Systematic review of previous costing studies

“There is a lack of well-designed studies taking a broad view of relevant comparators, costs and outcomes.”

Systematic review of previous costing studies

“There is a lack of well-designed studies taking a broad view of relevant comparators, costs and outcomes.”

“The cost-effectiveness of different forms of nutrition in different patient groups remains to be established.”

Purpose of this project

- **Full economic analysis** involves the comparison of alternative courses of action in terms of both **costs** (resource use) and **consequences** (patient outcomes, adverse effects).

Purpose of this project

- **Full economic analysis** involves the comparison of alternative courses of action in terms of both **costs** (resource use) and **consequences** (patient outcomes, adverse effects).

- A well-conducted meta-analysis based on a systematic review of randomized trials is the **least-biased** source of data to establish treatment **consequences** (resource use, patient outcomes, adverse effects) for use in an economic model.

Meta-analysis of early EN in critical illness

Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomised controlled trials

Meta-analysis of early EN in critical illness

Comprehensive Literature search
• MEDLINE (http://www.PubMed.org) and EMBASE (http://www.EMBASE.com)
• Academic and industry experts were contacted,
• Reference lists of identified systematic reviews and evidence-based guidelines were hand searched by at least two authors.
• The search was not restricted by Language.

Primary analysis
• Included only methodologically sound RCTs.

Primary outcome
• clinically meaningful patient oriented outcomes: (mortality / physical function / quality of life)

Results: Primary MA, mortality

Review: Early EN (<24h) vs Control (Primary Analysis)

Comparison: 01 early EN vs Control

Outcome: 01 Mortality, Intention to treat analysis

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>early EN (<24h) n/N</th>
<th>Control n/N</th>
<th>OR (fixed) 95% CI</th>
<th>Weight %</th>
<th>OR (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli 1990</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0/17</td>
<td>2/19</td>
<td>13.40 0.20 [0.01, 4.47]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0/27</td>
<td>1/25</td>
<td>8.89 0.30 [0.01, 7.63]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6/14</td>
<td>6/14</td>
<td>19.95 1.00 [0.22, 4.47]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1/21</td>
<td>3/17</td>
<td>18.38 0.23 [0.02, 2.48]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupelis 2001</td>
<td>1/30</td>
<td>7/30</td>
<td>39.38 0.11 [0.01, 0.99]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>119</td>
<td>115</td>
<td>100.00 0.34 [0.14, 0.85]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 8 (early EN (<24 h)), 19 (Control)

Test for heterogeneity: Chi² = 3.20, df = 4 (P = 0.52), I² = 0%

Test for overall effect: Z = 2.31 (P = 0.02)

Significant reduction in mortality with early EN (95%CI 8.6% to 17.2%, P=0.02)

Results: Primary MA, Pneumonia

Review: Early EN (<24h) vs Control (Primary Analysis)

Comparison: 01 early EN vs Control

Outcome: 02 Pneumonia, Intention to treat analysis

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>early EN (<24 h) n/N</th>
<th>Control n/N</th>
<th>OR (fixed) 95% CI</th>
<th>Weight %</th>
<th>OR (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompan 2004</td>
<td>9/27</td>
<td>16/25</td>
<td>70.15 [0.28, 0.88]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>3/14</td>
<td>6/14</td>
<td>29.85 [0.07, 1.91]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>41</td>
<td>39</td>
<td>100.00</td>
<td>0.31</td>
<td>[0.12, 0.78]</td>
</tr>
</tbody>
</table>

Total events: 12 (early EN (<24 h)), 22 (Control)

Test for heterogeneity: Chi² = 0.06, df = 1 (P = 0.80), I² = 0%

Test for overall effect: Z = 2.47 (P = 0.01)

Significant reduction in pneumonia with early EN (27% reduction, P=0.01)

Results: updated MA, ICU length of stay

Trend towards reduced length of ICU stay with early EN (2.34 days, P = 0.06)

Results: updated MA, duration of MV

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>EEN Mean [days]</th>
<th>EEN SD [days]</th>
<th>Total Mean [days]</th>
<th>Total SD [days]</th>
<th>Total</th>
<th>Weight</th>
<th>Mean difference IV, fixed, 95% CI [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul et al(^a)</td>
<td>5.29</td>
<td>6.28</td>
<td>21</td>
<td>6.12</td>
<td>5.32</td>
<td>17</td>
<td>48.1%</td>
</tr>
<tr>
<td>Kompan et al(^b)</td>
<td>12.9</td>
<td>8.1</td>
<td>27</td>
<td>15.6</td>
<td>18.1</td>
<td>25</td>
<td>13.3%</td>
</tr>
<tr>
<td>Nguyen et al(^c)</td>
<td>9.2</td>
<td>3.37</td>
<td>14</td>
<td>13.7</td>
<td>7.11</td>
<td>14</td>
<td>38.6%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>62</td>
<td></td>
<td>56</td>
<td></td>
<td>100.0%</td>
<td></td>
<td>−2.49 [−5.05, 0.07]</td>
</tr>
</tbody>
</table>

Figure 2 Meta-analysis of duration of mechanical ventilation: early enteral nutrition vs standard care.

Notes: Heterogeneity: $\chi^2 = 1.69$, df = 2 ($P = 0.43$); $I^2 = 0\%$. Test for overall effect: $Z = 1.91$ ($P = 0.06$).

Abbreviations: CI, confidence interval; EEN, early enteral nutrition; IV, inverse variance; SD, standard deviation; SoC, standard of care.

Trend towards reduced mechanical ventilation with early EN (2.49 days, $P = 0.06$)

Results: updated MA, hospital stay

No difference in hospital stay (2.46 days, P =0.72).

Summary of the consequences of early EN use

- Significant reduction in mortality (95%CI 8.6% to 17.2%, P=0.02)
- Trend towards reduction in length of ICU stay (2.34 days, P=0.06)
- Trend towards reduction in mechanical ventilation (2.49 days, P=0.06)
 - Significant reduction in VAP (27%, P=0.01)
Establishing costs

- Costs of ICU care:
Establishing costs

• Costs of ICU care:

Establishing costs

- Costs of ICU care:

 Microcosting requires recording all costs at the most detailed level.

 [Review of A Large Clinical Series: A Microcosting Study of Intensive Care Unit Stay in the Netherlands](http://jic.sagepub.com/)

 Journal of Intensive Care Medicine

Establishing costs

- Costs of ICU care:

 - Microcosting requires recording all costs at the most detailed level.
 - Conducted in the mixed med-surg ICUs of 3 hospitals in the Netherlands
 - 1 University and 2 General Hospitals

Establishing costs

- Costs of ICU care:
 - **Microcosting** requires recording all costs at the most detailed level.
 - Conducted in the mixed med-surg ICUs of 3 hospitals in the Netherlands
 - 1 University and 2 General Hospitals
 - Costed 576 patients, consuming 2,868 ICU days

Establishing costs

- Costs of ICU care:

 Average total costs of 1 ventilated-ICU day reported as €2,349

Establishing costs

- Costs of ICU care:

 - Average total costs of 1 ventilated-ICU day reported as €2,349
 - Average total costs of 1 non-ventilated ICU day reported as €1,835
 - indexed to 2012 Euros, using the European Central Bank Harmonised Index of Consumer Prices, Overall Index

Establishing costs

- Costs of 1 day of EN:
Establishing costs

- Costs of 1 day of EN:

 "The cost-effectiveness of different forms of nutrition in different patient groups remains to be established."

Establishing costs

- Costs of 1 day of EN:

Is the Use of Specialized Nutritional Formulations a Cost-Effective Strategy? A National Database Evaluation
Adrien Strickland, Anita Brogan, Janis Krauss, Robert Martindale and Gail Cresci
JPEN J Parenter Enteral Nutr. 2005 29: S81
DOI: 10.1177/01486071050290S1S81

The online version of this article can be found at:
http://pen.sagepub.com/content/29/1_suppl/S81

Establishing costs

• Costs of 1 day of EN:

Is the Use of Specialized Nutritional Formulations a Cost-Effective Strategy? A National Database Evaluation
Adrien Strickland, Anita Brogan, Janis Krauss, Robert Martindale and Gail Cresci
JPEN J Parenter Enteral Nutr 2005 29: S81
DOI: 10.1177/01486071050290S1S81

The online version of this article can be found at:
http://pen.sagepub.com/content/29/1_suppl/S81

• Single centre study from the US reported the total costs of a 7 day course of EN in medical ICU or trauma patients

Establishing costs

- Costs of 1 day of EN:

 Is the Use of Specialized Nutritional Formulations a Cost-Effective Strategy? A National Database Evaluation
 Adrien Strickland, Anita Brogan, Janis Krauss, Robert Martindale and Gail Cresci
 JPEN J Parenter Enteral Nutr. 2005 29: S81
 DOI: 10.1177/01486071050290S1S81

 The online version of this article can be found at:
 http://pen.sagepub.com/content/29/1_suppl/S81

- Single centre study from the US reported the total costs of a 7 day course of EN in medical ICU or trauma patients
- Considered purchase costs, supplies used for delivery, and professionals’ time

Establishing costs

- Costs of 1 day of EN:

 Is the Use of Specialized Nutritional Formulations a Cost-Effective Strategy? A National Database Evaluation
 Adrien Strickland, Anita Brogan, Janis Krauss, Robert Martindale and Gail Cresci
 J Parenter Enteral Nutr. 2005 29: S81
 DOI: 10.1177/01486071050290S1S81

 The online version of this article can be found at:
 http://pen.sagepub.com/content/29/1_suppl/S81

- Single centre study from the US reported the total costs of a 7 day course of EN in medical ICU or trauma patients
- Considered purchase costs, supplies used for delivery, and professionals’ time
- $35 per day
 - indexed to 2012 US dollars using US Consumer Price Index, Medical Consumers

Establishing costs

- Costs of 1 day of EN:

 Is the Use of Specialized Nutritional Formulations a Cost-Effective Strategy? A National Database Evaluation
 Adrien Strickland, Anita Brogan, Janis Krauss, Robert Martindale and Gail Cresci
 J Parenter Enteral Nutr. 2005 29: S81
 DOI: 10.1177/01486071050290S1S81

 The online version of this article can be found at:
 http://pen.sagepub.com/content/29/1_suppl/S81

- To account for variability between hospitals, and to allow for a conservative over-estimation of EN costs, the $35 estimate was inflated by 50% to $52.50

Costs of 1 day of EN:

To account for variability between hospitals, and to allow for a conservative over-estimation of EN costs, the $35 estimate was inflated by 50% to $52.50.

Converts to €39.30 per day, at 1 USD = 0.748597 EUR (mid-market rates, June 13, 2013 at 2:22 am coordinated universal time [UTC]).

Establishing costs

If one day of EN costs €39.30, and the provision of *early* EN requires EN to be started within 24 h of ICU admission, how many *extra days of EN* will the average patient receive?
Establishing costs

If one day of EN costs €39.30, and the provision of early EN requires EN to be started within 24 h of ICU admission, how many extra days of EN will the average patient receive?

Establishing costs

If one day of EN costs €39.30, and the provision of early EN requires EN to be started within 24 h of ICU admission, how many extra days of EN will the average patient receive?

- reviewed 2,946 patients admitted to 158 ICUs from 20 countries

Establishing costs

If one day of EN costs €39.30, and the provision of early EN requires EN to be started within 24 h of ICU admission, how many extra days of EN will the average patient receive?

- reviewed 2,946 patients admitted to 158 ICUs from 20 countries
- mean time from ICU admission to starting EN was 46 hours

Establishing costs

If one day of EN costs **€39.30**, and the provision of *early* EN requires EN to be started within 24 h of ICU admission, how many *extra days of EN* will the average patient receive?

- reviewed 2,946 patients admitted to 158 ICUs from 20 countries
- mean time from ICU admission to starting EN was 46 hours
- *worst* performing hospital waited 149.1 hours to commence EN (on average)

Establishing costs

If one day of EN costs €39.30, and the provision of early EN requires EN to be started within 24 h of ICU admission, how many extra days of EN will the average patient receive?

- reviewed 2,946 patients admitted to 158 ICUs from 20 countries
- mean time from ICU admission to starting EN was 46 hours
- worst performing hospital waited 149.1 hours to commence EN (on average)
- To ensure conservative overcosting of the number of extra days of EN support provided by starting EN within 24 hours of ICU admission, the worst performing hospital case was used.

Establishing costs

If one day of EN costs €39.30, and the provision of early EN requires EN to be started within 24 h of ICU admission, how many extra days of EN will the average patient receive?

- reviewed 2,946 patients admitted to 158 ICUs from 20 countries
- mean time from ICU admission to starting EN was 46 hours
- worst performing hospital waited 149.1 hours to commence EN (on average)
- To ensure conservative overcosting of the number of extra days of EN support provided by starting EN within 24 hours of ICU admission, the worst performing hospital case was used.
- Assumes that early EN patients received 6.21 extra days of EN, compared with standard care patients.

Calculation of crude costs

Crude calculations of costs (based on averages):

\[6.21 \text{ more days of EN} \times \€39.30 = \€244 \]
Calculation of crude costs

Crude calculations of costs (based on averages):

- 6.21 more days of EN \times €39.30 = + €244
- 2.49 less mechanical ventilation days \times €2,349 = €5,849
- 2.49 ventilated days \times €1,835 = €4,569
- Difference - €1,280
Calculation of crude costs

Crude calculations of costs (based on averages):

6.21 more days of EN \[\times \€39.30 = + \€244 \]

2.49 less mechanical ventilation days \[\times \€2,349 = \€5,849 \]

2.49 ventilated days \[\times \€1,835 = \€4,569 \]

Difference \[- \€1,280 \]

2.34 fewer ICU days, \[\times \€1,835 = - \€4,293 \]
Calculation of crude costs

Crude calculations of costs (based on averages):

- 6.21 more days of EN \(\times \) €39.30 = + €244
- 2.49 less mechanical ventilation days \(\times \) €2,349 = €5,849
- 2.49 ventilated days \(\times \) €1,835 = €4,569
 Difference = - €1,280
- 2.34 fewer ICU days, \(\times \) €1,835 = - €4,293

Total savings per treated patient = €5,330

© 2012, University of Sydney, Not for reproduction or distribution.
Calculation of crude costs

Crude calculations of costs (based on averages):

- 6.21 more days of EN \(\times \) €39.30 = + €244
- 2.49 less mechanical ventilation days \(\times \) €2,349 = €5,849
- 2.49 ventilated days \(\times \) €1,835 = €4,569

 Difference - €1,280

- 2.34 fewer ICU days, \(\times \) €1,835 = - €4,293

 Total €5,330

* savings per treated patient

...... but

© 2012, University of Sydney, Not for reproduction or distribution.
Calculation of costs, incorporating uncertainty

Stochastic cost model:

Calculation of costs, incorporating uncertainty

Stochastic cost model:

• The stochastic model simulates a 1,000 patient clinical trial and incorporates uncertainty around costs and consequences.

© 2012, University of Sydney, Not for reproduction or distribution.
Calculation of costs, incorporating uncertainty

Stochastic cost model:

- The stochastic model simulates a 1,000 patient clinical trial and incorporates uncertainty around costs and consequences.

 Ex. Cost of 1 non-ventilated ICU day has mean €1,835 and SD €1,688

 Difference in ICU stay has mean 2.34 and SD 15.87 days

Calculation of costs, incorporating uncertainty

Stochastic cost model:

- The stochastic model simulates a 1,000 patient clinical trial and incorporates uncertainty around costs and consequences.

 Ex. Cost of 1 non-ventilated ICU day has mean €1,835 and SD €1,688
 Difference in ICU stay has mean 2.34 and SD 15.87 days
Stochastic cost model:

- The stochastic model simulates a 1,000 patient clinical trial and incorporates uncertainty around costs and consequences.

 Ex. Cost of 1 non-ventilated ICU day has mean €1,835 and SD €1,688

 Difference in ICU stay has mean 2.34 and SD 15.87 days

- The total accumulated costs is the sum of a series of cross products of sets of numbers, each with considerable variability
Calculation of costs, incorporating uncertainty

Stochastic cost model:

- The stochastic model simulates a 1,000 patient clinical trial and incorporates uncertainty around costs and consequences.

 Ex. Cost of 1 non-ventilated ICU day has mean €1,835 and SD €1,688
 Difference in ICU stay has mean 2.34 and SD 15.87 days

- The total accumulated costs is the sum of a series of cross products of sets of numbers, each with considerable variability

- In addition, costs and length of stay are known to have long tailed distributions

 - Gamma distributed random numbers are generated with mean μ and shape α, where $\alpha = \mu^2 / \sigma^2$, (SAS, ver 6.12)
Complete model

- Step 1: generate a 1,000 patient database of clinical outcomes based on estimates of variability obtained from our meta-analysis,

Complete model

- Step 1: generate a 1,000 patient database of clinical outcomes based on estimates of variability obtained from our meta-analysis,

- Step 2: generate realistic costs on top of these clinical outcomes, based on estimates of cost variability obtained from the published literature

Step 1: generate a 1,000 patient database of clinical outcomes based on estimates of variability obtained from our meta-analysis,

Step 2: generate realistic costs on top of these clinical outcomes, based on estimates of cost variability obtained from the published literature

- 1,000 patient stochastic model (with costs and consequences)

Step 1: generate a 1,000 patient database of clinical outcomes based on estimates of variability obtained from our meta-analysis,

Step 2: generate realistic costs on top of these clinical outcomes, based on estimates of cost variability obtained from the published literature
 • 1,000 patient stochastic model (with costs and consequences)

Step 3: To allow the calculation of confidence intervals, the stochastic model is re-run 1,000,000 times

Complete model

• Step 1: generate a 1,000 patient database of clinical outcomes based on estimates of variability obtained from our meta-analysis,

• Step 2: generate realistic costs on top of these clinical outcomes, based on estimates of cost variability obtained from the published literature
 • 1,000 patient stochastic model (with costs and consequences)

• Step 3: To allow the calculation of confidence intervals, the stochastic model is re-run 1,000,000 times
 • large scale Monte Carlo simulation

Results

- Complete model required 1 hour 30 minutes computing time

Results

- Complete model required 1 hour 30 minutes computing time
- Generated a 117 GB data file containing information on 11,483,210,772 ICU cost-days

Results

• Complete model required 1 hour 30 minutes computing time
• Generated a 117 GB data file containing information on 11,483,210,772 ICU cost-days

Revealed a savings of €5,325 per patient in favour of early EN.

Results

- Complete model required 1 hour 30 minutes computing
- Generated a 117 GB data file containing information on 11,483,210,772 ICU cost-days

Revealed a savings of €5,325 per patient in favour of early EN,

95% CI €2,475 to €8,224*

*95% CI obtained via the Percentile method (non-parametric)

Summary

• The provision of early enteral nutrition to critically ill patients dominant:
 • Early EN reduces mortality (95% CI 8.6% to 17.2%) and
 • Early EN reduces costs (€5,325 per patient, 95% CI €2,475 to €8,224)

Summary

- The provision of early enteral nutrition to critically ill patients *dominant*:
 - Early EN reduces mortality *(95%CI 8.6% to 17.2%)* and
 - Early EN reduces costs *(€5,325 per patient, 95%CI €2,475 to €8,224)*

- Sensitivity analyses confirms these results
 - Varying discount rate
 - Using log-normal distributions instead of gamma
 - Using US costs

Summary

- The provision of early enteral nutrition to critically ill patients dominant:
 - Early EN reduces mortality (95%CI 8.6% to 17.2%) and
 - Early EN reduces costs (€5,325 per patient, 95%CI €2,475 to €8,224)

- Sensitivity analyses confirms these results
 - Varying discount rate
 - Using log-normal distributions instead of gamma
 - Using US costs
 - Worst case scenario, assuming no (zero) decrease in ICU stay or MV days:
 - Assuming 8.6% mortality, the incremental cost of providing early EN to all eligible patients was €2,836 (95% CI €2,087 to €4,297) per life saved.

The provision of early enteral nutrition to critically ill patients *dominant*:
- Early EN reduces mortality (95%CI 8.6% to 17.2%) *and*
- Early EN reduces costs (€5,325 per patient, 95%CI €2,475 to €8,224)

Sensitivity analyses confirms these results
- Varying discount rate
- Using log-normal distributions instead of gamma
- Using US costs
- Worst case scenario, assuming no (zero) decrease in ICU stay or MV days:
 - Assuming 8.6% mortality, the incremental cost of providing *early EN to all eligible patients* was €2,836 (95% CI €2,087 to €4,297) per life saved.

Questions?

ClinicoEconomics and Outcomes Research

Early enteral nutrition in critical illness: a full economic analysis using US costs