Understanding the benefits of Early Enteral Nutrition: From clinical trials to costs.

Dr Gordon S. Doig,
Associate Professor in Intensive Care,
Northern Clinical School Intensive Care Research Unit,
University of Sydney, Sydney, Australia
www.EvidenceBased.net
gdoig@med.usyd.edu.au

© 2016, University of Sydney, Not for reproduction or distribution without permission.
Summary of this talk

• Provide a context for this talk.

• Review the most recent clinical evidence on the topic.

• Present some interesting new physiological evidence supporting the clinical evidence.

• Conclude.
Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularised in the mid ‘80s.

Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularised in the mid ‘80s.
- Five major clinical practice guidelines recommend early EN.

Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularised in the mid ‘80s.
- Five major clinical practice guidelines recommend early EN.
 - Canadian guideline,
 - ACCEPT guideline (also Canadian),
 - Australian and New Zealand guideline,
 - European (ESPEN) guideline and
 - American (ASPEN and SCCM) guideline

Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularised in the mid ‘80s.
- Five major clinical practice guidelines recommend early EN.

- **Canadian guideline**, **Evidence of trend.**
 - < 48 h
- **ACCEPT guideline (also Canadian)**, **Significant evidence.**
 - < 24 h
- **Australian and New Zealand guideline**, **Significant evidence.**
 - < 24 h
- **European (ESPEN) guideline and**, **Significant evidence.**
 - < 24 h
- **American (ASPEN and SCCM) guideline**, **Evidence of trend.**
 - < 48 h

How early is early?
Evidence for early EN in critical illness

Comprehensive Literature search

- MEDLINE (http://www.PubMed.org) and EMBASE (http://www.EMBASE.com)
- Academic and industry experts were contacted,
- Reference lists of identified systematic reviews and evidence-based guidelines were hand searched by at least two authors.
- The search was not restricted by Language.

Meta-analysis of early EN in critical illness

Comprehensive Literature search

- MEDLINE (http://www.PubMed.org) and EMBASE (http://www.EMBASE.com)
- Academic and industry experts were contacted,
- Reference lists of identified systematic reviews and evidence-based guidelines were hand searched by at least two authors.
- The search was not restricted by Language.

Primary analysis

- Included only methodologically sound RCTs.

Meta-analysis of early EN in critical illness

Comprehensive Literature search

- MEDLINE (http://www.PubMed.org) and EMBASE (http://www.EMBASE.com)
- Academic and industry experts were contacted,
- Reference lists of identified systematic reviews and evidence-based guidelines were hand searched by at least two authors.
- The search was not restricted by Language.

Primary analysis

- Included only methodologically sound RCTs.

Primary outcome

- clinically meaningful patient oriented outcomes: (mortality / physical function / quality of life)

Potentially relevant papers identified and retrieved (N = 675)

Papers excluded, with reasons (N = 170)
- Not RCTs (Letters, observational studies, systematic reviews, narrative reviews, previous meta-analyses)

RCTs identified for detailed evaluation (N = 505)

RCTs excluded, with reasons (N = 475)
- 329 Did not provide a primary comparison of timing of EN (includes 5 pseudo-randomised trials + 99 trials not reporting clinically meaningful outcomes)
- 72 Not adult critically ill population
- 46 Not primary nutritional support intervention (GH etc)
- 16 Cross-over trials
- 13 Pre-operative interventions

RCTs evaluating timing of EN (N = 30)

Included in primary analysis (N = 6)

Excluded RCTs (N = 24)
- 7 - Early EN not started within 24 h of injury or ICU admission
- 4 - Patient oriented outcomes not reported (no mortality etc)
- 5 - Not critically ill patient population
- 2 - Early post-op oral intake, not early EN
- 2 - EN commenced at same time in both groups
- 1 - Immuno-enhanced EN (Impact)
- 2 - Excessive loss to follow-up
- 1 - Subgroup from a larger trial
Potentially relevant papers identified and retrieved (N = 675)

Papers excluded, with reasons (N = 170)
Not RCTs (Letters, observational studies, systematic reviews, narrative reviews, previous meta-analyses)

RCTs identified for detailed evaluation (N = 505)

RCTs excluded, with reasons (N = 475)
329 Did not provide a primary comparison of timing of EN (includes 5 pseudo-randomised trials + 99 trials not reporting clinically meaningful outcomes)
72 Not adult critically ill population
46 Not primary nutritional support intervention (GH etc)
16 Cross-over trials
13 Pre-operative interventions

RCTs evaluating timing of EN (N = 30)

Excluded RCTs (N = 24)
7 - Early EN not started within 24 h of injury or ICU admission
4 - Patient oriented outcomes not reported (no mortality etc)
5 - Not critically ill patient population
2 - Early post-op oral intake, not early EN
2 - EN commenced at same time in both groups
1 - Immuno-enhanced EN (Impact)
2 - Excessive loss to follow-up
1 - Subgroup from a larger trial

Included in primary analysis (N = 6)
Potentially relevant papers identified and retrieved \((N = 675) \)

Papers excluded, with reasons \((N = 170) \)
- Not RCTs (Letters, observational studies, systematic reviews, narrative reviews, previous meta-analyses)

RCTs identified for detailed evaluation \((N = 505) \)

RCTs excluded, with reasons \((N = 475) \)
- 329 Did not provide a primary comparison of timing of EN (includes 5 pseudo-randomised trials + 99 trials not reporting clinically meaningful outcomes)
- 72 Not adult critically ill population
- 46 Not primary nutritional support intervention (GH etc)
- 16 Cross-over trials
- 13 Pre-operative interventions

RCTs evaluating timing of EN \((N = 30) \)

Excluded RCTs \((N = 24) \)
- 7 - Early EN not started within 24 h of injury or ICU admission
- 4 - Patient oriented outcomes not reported (no mortality etc)
- 5 - Not critically ill patient population
- 2 - Early post-op oral intake, not early EN
- 2 - EN commenced at same time in both groups
- 1 - Immuno-enhanced EN (Impact)
- 2 - Excessive loss to follow-up
- 1 - Subgroup from a larger trial

Included in primary analysis \((N = 6) \)
Potentially relevant papers identified and retrieved (N = 675)

Papers excluded, with reasons (N = 170)
- Not RCTs (Letters, observational studies, systematic reviews, narrative reviews, previous meta-analyses)

RCTs identified for detailed evaluation (N = 505)

RCTs excluded, with reasons (N = 475)
- 329 Did not provide a primary comparison of timing of EN (includes 5 pseudo-randomised trials + 99 trials not reporting clinically meaningful outcomes)
- 72 Not adult critically ill population
- 46 Not primary nutritional support intervention (GH etc)
- 16 Cross-over trials
- 13 Pre-operative interventions

RCTs evaluating timing of EN (N = 30)

Excluded RCTs (N = 24)
- 7 - Early EN not started within 24 h of injury or ICU admission
- 4 - Patient oriented outcomes not reported (no mortality etc)
- 5 - Not critically ill patient population
- 2 - Early post-op oral intake, not early EN
- 2 - EN commenced at same time in both groups
- 1 - Immuno-enhanced EN (Impact)
- 2 - Excessive loss to follow-up
- 1 - Subgroup from a larger trial

Included in primary analysis (N = 6)
Potentially relevant papers identified and retrieved
\((N = 675)\)

Papers excluded, with reasons
\((N = 170)\)
Not RCTs (Letters, observational studies, systematic reviews, narrative reviews, previous meta-analyses)

RCTs identified for detailed evaluation
\((N = 505)\)

RCTs excluded, with reasons
\((N = 475)\)
329 Did not provide a primary comparison of timing of EN (includes 5 pseudo-randomised trials + 99 trials not reporting clinically meaningful outcomes)
72 Not adult critically ill population
46 Not primary nutritional support intervention (GH etc)
16 Cross-over trials
13 Pre-operative interventions

RCTs evaluating timing of EN
\((N = 30)\)

Excluded RCTs
\((N = 24)\)
7 - Early EN not started within 24 h of injury or ICU admission
4 - Patient oriented outcomes not reported (no mortality etc)
5 - Not critically ill patient population
2 - Early post-op oral intake, not early EN
2 - EN commenced at same time in both groups
1 - Immuno-enhanced EN (Impact)
1 - Excessive loss to follow-up
1 - Subgroup from a larger trial

Included in primary analysis
\((N = 6)\)
Meta-analysis of early EN in critical illness

Chiarelli, 1990: 20 pts, burns

Kompan, 1999: 36 pts, trauma

Kompan, 2004: 52 pts, trauma

Nguyen, 2008: 28 pts, med/surg critically ill

Chuntrasakul, 1996: 38 pts, trauma

Pupelis, 2001: 60 pts, severe pancreatitis and peritonitis

Results: Primary MA, mortality

Review: Early EN (<24h) vs Control (Primary Analysis)
Comparison: 01 early EN vs Control
Outcome: 01 Mortality, Intention to treat analysis

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>early EN (<24 h) n/N</th>
<th>Control n/N</th>
<th>OR (fixed) 95% CI</th>
<th>Weight %</th>
<th>OR (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli 1990</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0/17</td>
<td>2/19</td>
<td>13.40 0.20 [0.01, 4.47]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0/27</td>
<td>1/25</td>
<td>8.89 0.30 [0.01, 7.63]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6/14</td>
<td>6/14</td>
<td>19.95 1.00 [0.22, 4.47]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuntasaksul 1996</td>
<td>1/21</td>
<td>3/17</td>
<td>18.38 0.23 [0.02, 2.48]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupelis 2001</td>
<td>1/30</td>
<td>7/30</td>
<td>39.38 0.11 [0.01, 0.99]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>119</td>
<td>115</td>
<td>100.00 0.34 [0.14, 0.85]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 8 (early EN (<24 h)), 19 (Control)
Test for heterogeneity: Chi² = 3.20, df = 4 (P = 0.52), I² = 0%
Test for overall effect: Z = 2.31 (P = 0.02)

Significant reduction in mortality (10% absolute reduction, P=0.02)

Results: Primary MA, Pneumonia

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>early EN (<24 h) n/N</th>
<th>Control n/N</th>
<th>OR (fixed) 95% CI</th>
<th>Weight %</th>
<th>OR (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompan 2004</td>
<td>9/27</td>
<td>16/25</td>
<td>70.15 0.28 [0.09, 0.88]</td>
<td>46.61</td>
<td></td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>3/14</td>
<td>6/14</td>
<td>29.85 0.36 [0.07, 1.91]</td>
<td>10.92</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>41</td>
<td>39</td>
<td>100.00 0.31 [0.12, 0.78]</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total events: 12 (early EN (<24 h)), 22 (Control)

Test for heterogeneity: $\chi^2 = 0.06$, df = 1 (P = 0.80), $I^2 = 0$

Test for overall effect: $Z = 2.47$ (P = 0.01)

Significant reduction in pneumonia (27% absolute reduction, P=0.01)

Novel MA of gut dysfunction

- Meta-analysis suggests the provision of early EN may reduce the incidence of gut dysfunction:
 - 33% (22/67) of patients vs. 43% (28/65) of patients, p=0.09, no heterogeneity
- One included trial demonstrated a significantly shorter duration of gut dysfunction (p=0.045)
Results: updated MA, ICU length of stay

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>EEN</th>
<th>SoC</th>
<th>Mean difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>IV, fixed, 95% CI [days]</td>
</tr>
<tr>
<td>Chuntrasakul et al</td>
<td>8.14</td>
<td>8.35</td>
<td>47.7%</td>
</tr>
<tr>
<td>Pupolis et al</td>
<td>13.9</td>
<td>16</td>
<td>7.3%</td>
</tr>
<tr>
<td>Kompan et al</td>
<td>15.9</td>
<td>20.6</td>
<td>8.9%</td>
</tr>
<tr>
<td>Nguyen et al</td>
<td>11.3</td>
<td>15.9</td>
<td>36.1%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>92</td>
<td>86</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 1 Meta-analysis of ICU length of stay: early enteral nutrition vs standard care.
Notes: Heterogeneity: $\chi^2 = 2.94, df = 3 (P = 0.40);$ $I^2 = 0\%.$ Test for overall effect: $Z = 1.87 (P = 0.06).$
Abbreviations: CI, confidence interval; EEN, early enteral nutrition; ICU, Intensive Care Unit; IV, inverse variance; SD, standard deviation; SoC, standard of care.

Trend towards reduced length of ICU stay with early EN (2.34 days, $P = 0.06$)

Results: updated MA, duration of MV

Trend towards reduced mechanical ventilation with early EN (2.49 days, P = 0.06)

Simulation study: Heyland’s 2003 MA

- We conducted a *simulation study* to test the appropriateness of key assumptions behind our study selection and analysis techniques.

- We duplicated Heyland’s 2003 MA,
 - we used Heyland’s selection process and analysis techniques
 - BUT we only included articles that provided EN *within 24 h* of injury or ICU admission

Simulation study: Heyland’s 2003 MA

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h) n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14 0.27 [0.03, 2.37]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyer</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27 1.00 [0.16, 6.38]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39 0.33 [0.01, 7.55]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minard</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42 0.31 [0.04, 2.44]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51 0.48 [0.05, 5.07]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70 0.14 [0.02, 1.09]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57 1.05 [0.30, 3.66]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>159</td>
<td>158</td>
<td>100.00 0.52 [0.25, 1.08]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: Chi² = 4.05, df = 6 (P = 0.67), I² = 0%
Test for overall effect: Z = 1.76 (P = 0.08)

Trend towards a reduction in mortality (8% absolute reduction, P=0.08)

Simulation study: Heyland’s 2003 MA

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h) n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14 0.27 [0.03, 2.37]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyer</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27 1.00 [0.16, 6.38]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39 0.33 [0.01, 7.55]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42 0.31 [0.04, 2.44]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51 0.48 [0.05, 5.07]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70 0.14 [0.02, 1.09]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57 1.05 [0.30, 3.66]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>159</td>
<td>158</td>
<td>100.00 0.52 [0.25, 1.08]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 10 (Early EN (<60 h)), 23 (Control)

Test for heterogeneity: Chi² = 4.05, df = 6 (P = 0.67), I² = 0%

Test for overall effect: Z = 1.76 (P = 0.08)

Trend towards a reduction in mortality (8% absolute reduction, P=0.08)

Simulation study: Heyland’s 2003 MA

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h) n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14</td>
<td>0.27</td>
<td>[0.03, 2.37]</td>
</tr>
<tr>
<td>Eyer</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27</td>
<td>1.00</td>
<td>[0.16, 6.38]</td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39</td>
<td>0.33</td>
<td>[0.01, 7.55]</td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42</td>
<td>0.31</td>
<td>[0.04, 2.44]</td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51</td>
<td>0.48</td>
<td>[0.05, 5.07]</td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70</td>
<td>0.14</td>
<td>[0.02, 1.09]</td>
</tr>
<tr>
<td>Singh (<48 h)</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57</td>
<td>1.05</td>
<td>[0.30, 3.66]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>159</td>
<td>158</td>
<td>100.00</td>
<td>0.52</td>
<td>[0.25, 1.08]</td>
</tr>
</tbody>
</table>

Total events: 10 (Early EN (<60 h)), 23 (Control)
Test for heterogeneity: Chi² = 4.05, df = 6 (P = 0.67), I² = 0%
Test for overall effect: Z = 1.76 (P = 0.08)

Trend towards a reduction in mortality (8% absolute reduction, P=0.08)

Simulation study: Heyland’s 2003 MA

Review: Heyland Early EN
Comparison: 01 Mortality
Outcome: 01 Mortality

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h)</th>
<th>Control</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14</td>
<td>0.27</td>
<td>0.27 [0.03, 2.37]</td>
</tr>
<tr>
<td>Eyer (average time to early EN: 31 h)</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27</td>
<td>1.00 [0.16, 6.38]</td>
<td>5.39</td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>15.27</td>
<td>1.00</td>
<td>1.00 [0.16, 6.38]</td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42</td>
<td>0.31</td>
<td>0.31 [0.04, 2.44]</td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51</td>
<td>0.48</td>
<td>0.48 [0.05, 5.07]</td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70</td>
<td>0.14</td>
<td>0.14 [0.02, 1.09]</td>
</tr>
<tr>
<td>Singh (<48 h)</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57</td>
<td>1.05</td>
<td>1.05 [0.30, 3.66]</td>
</tr>
</tbody>
</table>

Total (95% CI) 159 158 100.00 0.52 [0.25, 1.08]

Total events: 10 (Early EN (<60 h)), 23 (Control)
Test for heterogeneity: Chi² = 4.05, df = 6 (P = 0.67), I² = 0%
Test for overall effect: Z = 1.76 (P = 0.08)

Trend towards a reduction in mortality *(8% absolute reduction, P=0.08)*

Simulation study: Heyland’s 2003 MA

Review: Heyland Early EN
Comparison: 01 Mortality
Outcome: 01 Mortality

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<60 h) n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td>100.00</td>
<td>0.26 [0.08, 0.83]</td>
</tr>
<tr>
<td>Chuntrasakul</td>
<td>1/21</td>
<td>3/17</td>
<td>11.14</td>
<td>0.27 [0.03, 2.37]</td>
<td></td>
</tr>
<tr>
<td>Eyer (average time to early EN: 31 h)</td>
<td>2/19</td>
<td>2/19</td>
<td>15.27</td>
<td>1.00 [0.16, 6.38]</td>
<td></td>
</tr>
<tr>
<td>Kompan</td>
<td>0/14</td>
<td>1/14</td>
<td>5.39</td>
<td>0.33 [0.01, 7.55]</td>
<td></td>
</tr>
<tr>
<td>Minard (<60 h)</td>
<td>1/12</td>
<td>4/15</td>
<td>12.42</td>
<td>0.31 [0.04, 2.44]</td>
<td></td>
</tr>
<tr>
<td>Moore</td>
<td>1/32</td>
<td>2/31</td>
<td>9.51</td>
<td>0.48 [0.05, 5.07]</td>
<td></td>
</tr>
<tr>
<td>Pupelis</td>
<td>1/30</td>
<td>7/30</td>
<td>12.70</td>
<td>0.14 [0.02, 1.09]</td>
<td></td>
</tr>
<tr>
<td>Singh (<48 h)</td>
<td>4/21</td>
<td>4/22</td>
<td>33.57</td>
<td>1.05 [0.30, 3.66]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 107 102 100.00 0.26 [0.08, 0.83]

Total events: 3 (Early EN (<60 h)), 13 (Control)
Test for heterogeneity: $\chi^2 = 0.64$, df = 3 ($P = 0.89$), $I^2 = 0\%$
Test for overall effect: $Z = 2.27$ ($P = 0.02$)

Significant reduction in mortality (10% absolute reduction, $P=0.02$)

Therefore, evidence of benefit has been present in our literature since at least 2003, if early EN is defined as < 24 h from admission or injury!!!
Early EN in Upper GI Sx: Indirect evidence
Early EN in Upper GI Sx: Indirect evidence

- A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.
- 13 studies, 1,173 patients

A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.

- 13 studies, 1,173 patients
- Early feeding resulted in a significant decrease in:
 - Mortality (2.4% eEN vs 6.9%, p=0.03)

A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.

- 13 studies, 1,173 patients

- Early feeding resulted in a significant decrease in:
 - Mortality (2.4% eEN vs 6.9%, p=0.03)

- Early feeding was not associated with any harms:
 - Wound infections (7.1% eEN vs 9.3%, p=0.26)
 - Anastomotic dehiscence (2.8% eEN vs 4.3%, p=0.27)
 - Pneumonia (2.3% eEN vs 3.3%, p=0.46)

A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.

- 13 studies, 1,173 patients
- Early feeding resulted in a significant decrease in:
 - Mortality (2.4% eEN vs 6.9%, p=0.03)
- Early feeding was not associated with any harms:
 - Wound infections (7.1% eEN vs 9.3%, p=0.26)
 - Anastomotic dehiscence (2.8% eEN vs 4.3%, p=0.27)
 - Pneumonia (2.3% eEN vs 3.3%, p=0.46)

“There is no obvious benefit for keeping patients “nil by mouth” after gastrointestinal surgery”

Clinical evidence supporting early EN (< 24 h)

- Evidence supporting the presence of a significant mortality benefit from the provision of early EN (< 24 h of injury or ICU admission) has been present in our literature since 2003.
Clinical evidence supporting early EN (< 24 h)

- Evidence supporting the presence of a significant mortality benefit from the provision of early EN (< 24 h of injury or ICU admission) has been present in our literature since 2003.

- Updated systematic review of the literature suggests early EN results in an 8 to 10% absolute reduction in mortality (P = 0.02).

Clinical evidence supporting early EN (< 24 h)

- Evidence supporting the presence of a significant mortality benefit from the provision of early EN (< 24 h of injury or ICU admission) has been present in our literature since 2003.
- Updated systematic review of the literature suggests early EN results in an 8 to 10% absolute reduction in mortality (P = 0.02).
- Pneumonia was significantly reduced.

Clinical evidence supporting early EN (< 24 h)

- Evidence supporting the presence of a significant mortality benefit from the provision of early EN (< 24 h of injury or ICU admission) has been present in our literature since 2003.

- Updated systematic review of the literature suggests early EN results in an 8 to 10% absolute reduction in mortality (P = 0.02).

- Pneumonia was significantly reduced.

- Strong trend towards a reduction in duration of mechanical ventilation.

Clinical evidence supporting early EN (< 24 h)

- Evidence supporting the presence of a significant mortality benefit from the provision of early EN (< 24 h of injury or ICU admission) has been present in our literature since 2003.
- Updated systematic review of the literature suggests early EN results in an 8 to 10% absolute reduction in mortality ($P = 0.02$).
- Pneumonia was significantly reduced.
- Strong trend towards a reduction in duration of mechanical ventilation.
- Strong trend towards a reduction in ICU stay.

Clinical evidence supporting early EN (< 24 h)

- Evidence supporting the presence of a significant mortality benefit from the provision of early EN (< 24 h of injury or ICU admission) has been present in our literature since 2003.
- Updated systematic review of the literature suggests early EN results in an 8 to 10% absolute reduction in mortality (P = 0.02).
- Pneumonia was significantly reduced.
- Strong trend towards a reduction in duration of mechanical ventilation.
- Strong trend towards a reduction in ICU stay.
- *There were no suggestions of any increase in any adverse events or harms.*

$1,000,000 question:
$1,000,000 question:

1. How could early EN reduce infectious complications and mortality?
The gut as the motor of MODs

With the onset of critical illness:

- Loss of functional and structural integrity of the intestinal epithelium.

The gut as the motor of MODs: recent advances

Recent advances in our understanding:

1. Paneth cell function
2. Intestinal Alkaline Phosphatase.
Paneth cells

- Highly specialized epithelial cells located in the crypts of the small intestine.

Paneth cells

- Highly specialized epithelial cells located in the crypts of the small intestine.

Paneth cells

- Highly specialized epithelial cells located in the crypts of the small intestine.
- Paneth cells are the main producers of antimicrobial proteins in the gut.

Paneth cells

- Highly specialized epithelial cells located in the crypts of the small intestine.
- Paneth cells are the main producers of antimicrobial proteins in the gut.
- ‘Sense’ bacterial cells and secrete granules containing antimicrobial peptides.
 - Lysozyme, α-defensins plus others

Paneth cells

- Highly specialized epithelial cells located in the crypts of the small intestine.
- Paneth cells are the main producers of antimicrobial proteins in the gut.
- ‘Sense’ bacterial cells and secrete granules containing antimicrobial peptides.
 - Lysozyme, α-defensins plus others
- Play a crucial role in preventing bacterial translocation in situations of physical intestinal barrier loss.

Paneth cells and fasting

- 30 male C57BL/6 mice aged 12 weeks were randomised to 48 h of food restriction (fasting) or standard *ad libetum* food access.

Paneth cells and fasting

- 30 male C57BL/6 mice aged 12 weeks were randomised to 48 h of food restriction (fasting) or standard *ad libetum* food access.
- After 48 h, all mice were anesthetized with ketamine / xylazine and sacrificed by bleeding.

Paneth cells and fasting

- 30 male C57BL/6 mice aged 12 weeks were randomised to 48 h of food restriction (fasting) or standard *ad libetum* food access.
- After 48 h, all mice were anesthetized with ketamine / xylazine and sacrificed by bleeding.
- Mesenteric lymph nodes and ileum were instantly harvested and prepared for study.

Paneth cells and fasting

• Fasting led to a significant reduction of lysozyme expression (P<0.01 by quantitative western blot assay and quantitative PCR for lysozyme mRNA).

• Why?

Paneth cells and fasting

Paneth cells and fasting

- Fasting led to significant increase in autophagy activity in Paneth cells, with more late-stage degradative autophagolysosomes.

Autophagocytosis

Autophagy

A catabolic process that delivers intracellular constituents sequestered in double-membrane vesicles to lysosomes for degradation.

Autophagocytosis

Autophagy

A catabolic process that delivers intracellular constituents sequestered in double-membrane vesicles to lysosomes for degradation.

First described to be induced during nutrient starvation approximately 50 years ago.

Autophagocytosis

Autophagy

A catabolic process that delivers intracellular constituents sequestered in double-membrane vesicles to lysosomes for degradation.

First described to be induced during nutrient starvation approximately 50 years ago.

Eliminates damaged proteins and organelles tagged with ubiquitin, complementing the ubiquitin-proteasome system.

Autophagy

A catabolic process that delivers intracellular constituents sequestered in double-membrane vesicles to lysosomes for degradation.

First described to be induced during nutrient starvation approximately 50 years ago.

Eliminates damaged proteins and organelles tagged with ubiquitin, complementing the ubiquitin-proteasome system.

Plays a crucial role in development, differentiation, aging, infection, cancer, neurodegeneration, insulin resistance, obesity, and diabetes.

Autophagocytosis

Autophagy

A catabolic process that delivers intracellular constituents sequestered in double-membrane vesicles to lysosomes for degradation.

First described to be induced during nutrient starvation approximately 50 years ago.

Eliminates damaged proteins and organelles tagged with ubiquitin, complementing the ubiquitin-proteasome system.

Plays a crucial role in development, differentiation, aging, infection, cancer, neurodegeneration, insulin resistance, obesity, and diabetes.

“In nutrient deprivation, autophagy activates bulk protein degradation to harvest amino acids as a fuel for ATP production through the tricarboxylic acid (TCA) cycle.”

Paneth cells and fasting

- Fasting led to significant increase in autophagy activity in Paneth cells, with more late-stage degradative autophagolysosomes.

Paneth cells and fasting

- Fasting led to significant increase in autophagy activity in Paneth cells, with more late-stage degradative autophagolysosomes.

- Increase in bacterial translocation as indicated by a 2-fold increase in CFUs cultured from mesenteric lymph node tissue (p < 0.01).

Paneth cells and fasting

- Autophagy is induced in all cells on starvation and serves to mobilize amino acids for transport to the liver to fuel gluconeogenesis.

Paneth cells and fasting

- Autophagy is induced in all cells on starvation and serves to mobilize amino acids for transport to the liver to fuel gluconeogenesis.
- Paneth cells are the main producers of antimicrobial peptides in the intestine.

Paneth cells and fasting

- Autophagy is induced in all cells on starvation and serves to mobilize amino acids for transport to the liver to fuel gluconeogenesis.
- Paneth cells are the main producers of antimicrobial peptides in the intestine.
- Autophagocytosis of the Paneth cells appears to compromise their important immune function, as demonstrated by a reduction in antimicrobial peptide production and increase in bacterial translocation.
Paneth cells and fasting

- Autophagy is induced in all cells on starvation and serves to mobilize amino acids for transport to the liver to fuel gluconeogenesis.
- Paneth cells are the main producers of antimicrobial peptides in the intestine.
- Autophagocytosis of the Paneth cells appears to compromise their important immune function, as demonstrated by a reduction in antimicrobial peptide production and increase in bacterial translocation.

Starvation conditions are known to enhance protein breakdown by autophagy, whereas systemic amino acids down regulate autophagy by a factor of 2 to 5 times within 20 minutes.

intestinal Alkaline Phosphatase (iAP)

- iAP is a brush-border protein produced by villus associated enterocytes in the duodenum

intestinal Alkaline Phosphatase (iAP)

- iAP is a brush-border protein produced by villus associated enterocytes in the duodenum.

- iAP is capable of ‘detoxifying’ Gram negative bacteria by dephosphorylating the lipid A moiety of the lipopolysaccharide (LPS) in their cell walls.

intestinal Alkaline Phosphatase (iAP)

- iAP is a brush-border protein produced by villus associated enterocytes in the duodenum.
- iAP is capable of ‘detoxifying’ Gram negative bacteria by dephosphorylating the lipid A moiety of the lipopolysaccharide (LPS) in their cell walls.
- iAP is secreted into the gut lumen and remains functional as it is carried distally through the lumen of the small and large intestine.

iAP and severe peritonitis

90 C57BL/6 mice were randomly divided into 6 groups:

- 15 Sham surgical procedure
- 15 Cecal-ligation and perforation (CLP) + control i.p. saline injection
- 15 CLP + 5 IU i.p. iAP injection
- 15 CLP + 10 IU i.p. iAP injection
- 15 CLP + 25 IU i.p. iAP injection
- 15 CLP + 50 IU i.p. iAP injection

Survival rates were determined up to 7 days post CLP surgery.

iAP and severe peritonitis

- 15 Sham surgical procedure

100% survival at day 7

iAP and severe peritonitis

- 15 Sham surgical procedure 100% survival at day 7
- 15 CLP + control i.p. saline injection 0% survival at day 3

iAP and severe peritonitis

- 15 Sham surgical procedure 100% survival at day 7
- 15 CLP + control i.p. saline injection 0% survival at day 3
- 15 CLP + 5 IU i.p. iAP injection 26% survival at day 7
- 15 CLP + 10 IU i.p. iAP injection 40% survival at day 7

iAP and severe peritonitis

- 15 Sham surgical procedure: 100% survival at day 7
- 15 CLP + control i.p. saline injection: 0% survival at day 3
- 15 CLP + 5 IU i.p. iAP injection: 26% survival at day 7
- 15 CLP + 10 IU i.p. iAP injection: 40% survival at day 7
- 15 CLP + 25 IU i.p. iAP injection: 50% survival at day 7
- 15 CLP + 50 IU i.p. iAP injection: 50% survival at day 7

iAP and severe peritonitis

- 15 Sham surgical procedure 100% survival at day 7
- 15 CLP + control i.p. saline injection 0% survival at day 3
- 15 CLP + 5 IU i.p. iAP injection 26% survival at day 7
- 15 CLP + 10 IU i.p. iAP injection 40% survival at day 7
- 15 CLP + 25 IU i.p. iAP injection 50% survival at day 7
- 15 CLP + 50 IU i.p. iAP injection 50% survival at day 7

iAP and severe peritonitis

- peritoneal injection of iAP was found to be protective in a lethal model of abdominal peritonitis leading to sepsis

- measures of inflammation and deaths were reduced (IL-6 and TNF-α)

iAP has very strong anti-gram negative activity.

iAP and fasting

- 15 C57BL/6 mice randomly assigned to 3 groups:
 - Fed for 2 days (n = 5)
 - Fasted for 2 days (n = 5)
 - Fasted for 2 days then fed for 2 days (n = 5)

- Segments of bowel studied for iAP levels and iAP activity (LPS dephosphorylation)
iAP and fasting

- Fasting results in a reduction in iAP levels and iAP functional activity.

- iAP levels and function can be returned to normal by enteral feeding after fasting.

$1,000,000 question:

1. How could early EN reduce infectious complications and mortality?
$1,000,000 question:

1. How could early EN reduce infectious complications and mortality?

It is plausible that early EN could help prevent or ameliorate lesions leading to a compromised gut host defense system (Paneth cells, iAP, etc) thus reducing infectious complications which confers a mortality advantage.
Summary

Meta-analysis and large-scale clinical trials demonstrate reduced infectious complications, reduced mortality, reduced duration of ventilation and reduced ICU stay attributable to early nutrition support, provided within 24 h of the onset of critical illness or major injury.
Summary

Meta-analysis and large-scale clinical trials demonstrate reduced infectious complications, reduced mortality, reduced duration of ventilation and reduced ICU stay attributable to early nutrition support, provided within 24 h of the onset of critical illness or major injury.

Recent physiological evidence provides reasonable mechanistic hypotheses supporting these clinical benefits.
Meta-analysis and large-scale clinical trials demonstrate reduced infectious complications, reduced mortality, reduced duration of ventilation and reduced ICU stay attributable to early nutrition support, provided within 24 h of the onset of critical illness or major injury.

Recent physiological evidence provides reasonable mechanistic hypotheses supporting these clinical benefits.

Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.
Meta-analysis and large-scale clinical trials demonstrate reduced infectious complications, reduced mortality, reduced duration of ventilation and reduced ICU stay attributable to early nutrition support, provided within 24 h of the onset of critical illness or major injury.

Recent physiological evidence provides reasonable mechanistic hypotheses supporting these clinical benefits.

Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.

- **EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated**

Summary

Meta-analysis and large-scale clinical trials demonstrate reduced infectious complications, reduced mortality, reduced duration of ventilation and reduced ICU stay attributable to early nutrition support, provided within 24 h of the onset of critical illness or major injury.

Recent physiological evidence provides reasonable mechanistic hypotheses supporting these clinical benefits.

Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.

- **EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated**
- **9,000 RMB per patient savings** using local costs of ICU care

Assorted loose ends
Assorted loose ends

• Rates and Targets
Assorted loose ends

• Rates and Targets
 • There is no robust evidence to mandate specific rates or goals.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.
Assorted loose ends

• Rates and Targets
 • There is no robust evidence to mandate specific rates or goals.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.

• Gut Dysmotility
Assorted loose ends

• Rates and Targets
 • There is no robust evidence to mandate specific rates or goals.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.

• Gut Dysmotility
 • Mounting evidence suggests we create gut dysmotility by feeding late.
Assorted loose ends

- **Rates and Targets**
 - There is no robust evidence to mandate specific rates or goals.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.

- **Gut Dysmotility**
 - Mounting evidence suggests we create gut dysmotility by feeding late.
 - Gastric tubes are easier to place and allow you to start earlier.
Assorted loose ends

- Rates and Targets
 - There is no robust evidence to mandate specific rates or goals.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.

- Gut Dysmotility
 - Mounting evidence suggests we create gut dysmotility by feeding late.
 - Gastric tubes are easier to place and allow you to start earlier.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.
Assorted loose ends

- Rates and Targets
 - There is no robust evidence to mandate specific rates or goals.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.

- Gut Dysmotility
 - Mounting evidence suggests we create gut dysmotility by feeding late.
 - Gastric tubes are easier to place and allow you to start earlier.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.
 - Do not allow the placement of a post-pyloric tube to delay or interrupt EN.
Assorted loose ends

• Rates and Targets
 • There is no robust evidence to mandate specific rates or goals.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.

• Gut Dysmotility
 • Mounting evidence suggests we create gut dysmotility by feeding late.
 • Gastric tubes are easier to place and allow you to start earlier.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.
 • Do not allow the placement of a post-pyloric tube to delay or interrupt EN.
 • EN should begin within 24 h of ICU admission, as soon as shock is stabilised:
Assorted loose ends

• Rates and Targets
 • There is no robust evidence to mandate specific rates or goals.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.

• Gut Dysmotility
 • Mounting evidence suggests we create gut dysmotility by feeding late.
 • Gastric tubes are easier to place and allow you to start earlier.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.
 • Do not allow the placement of a post-pyloric tube to delay or interrupt EN.

• EN should begin within 24 h of ICU admission, as soon as shock is stabilised:
 • Shock Index ≤ 1 (Heart rate / SBP) for one hour or
 • SBP > 100 mmHg without need for increasing doses of vasoactive agents for one hour.
Assorted loose ends

- **Rates and Targets**
 - There is no robust evidence to mandate specific rates or goals.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.

- **Gut Dysmotility**
 - Mounting evidence suggests we create gut dysmotility by feeding late.
 - Gastric tubes are easier to place and allow you to start earlier.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.
 - Do not allow the placement of a post-pyloric tube to delay or interrupt EN.

- **EN should begin within 24 h of ICU admission, as soon as shock is stabilised:**
 - Shock Index ≤ 1 (Heart rate / SBP) for one hour or
 - SBP > 100 mmHg without need for *increasing* doses of vasoactive agents for one hour.

Stable shock is not defined by weaning or removing all vasoactive agents.
Meta-analysis and large-scale clinical trials demonstrate reduced infectious complications, reduced mortality, reduced duration of ventilation and reduced ICU stay attributable to early nutrition support, provided within 24 h of the onset of critical illness or major injury.

Recent physiological evidence provides reasonable mechanistic hypotheses supporting these clinical benefits.

Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.

- **EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated**
- **9,000 RMB per patient savings using local costs of ICU care**

www.EvidenceBased.net

• Early EN is a dominant technology: It improves health outcome and reduces costs!!

• EN should begin within 24 h of ICU admission, as soon as shock is stabilised:
 • Shock Index ≤ 1 (Heart rate / SBP) for one hour or
 • SBP > 100 mmHg without need for *increasing* doses of vasoactive agents for one hour.

Stable shock is not defined by weaning or removing all vasoactive agents.

How early is early?

- Early EN defined as within 24 hours of injury or ICU admission

Multicentred, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT)

Abstract

Background: The provision of nutritional support for patients in intensive care units (ICUs) varies widely both within and between institutions. We tested the hypothesis that evidence-based algorithms to improve nutritional support in the ICU would improve patient outcomes.

Methods: A cluster-randomized controlled trial was performed in the ICUs of 11 community and 3 teaching hospitals between October 1997 and September 1998. Hospital ICUs were stratified by hospital type and randomized to the intervention or control arm. Patients at least 16 years of age with an expected ICU stay of at least 48 hours were enrolled in the study.

If EN is preferable, starting sooner may be better. Data from the few animal and clinical studies on this topic support this hypothesis. However, recent observational studies have documented low rates of “optimal” use of EN in the critical care setting. EN is often started several days after admission, patients do not tolerate adequate amounts of EN, and PN is used excessively in some patients (up to 60% in some countries). Using an audit of intensive care units (ICUs) in community and teaching hospitals, our Critical Care Research Network (CCR-Net) also documented delays in the institution of nutritional support that included both enteral and parenteral routes. Several studies have
How early is early?

- Early EN defined as *within 24 hours* of injury or ICU admission

Results: Two hospitals crossed over and were excluded from the primary analysis. Compared with the patients in the control hospitals (*n* = 214), the patients in the intervention hospitals (*n* = 248) received significantly more days of enteral nutrition (6.7 v. 5.4 per 10 patient-days; *p* = 0.042), had a significantly shorter mean stay in hospital (25 v. 35 days; *p* = 0.003) and showed a trend toward reduced mortality (27% v. 37%; *p* = 0.058). The mean stay in the ICU did not differ between the control and intervention groups (10.9 v. 11.8 days; *p* = 0.7).

Interpretation: Implementation of evidence-based recommendations improved the provision of nutritional support and was associated with improved clinical outcomes.

How early is early?

- Early EN defined as **within 24 hours** of injury or ICU admission

Research

Results: Two hospitals crossed over and were excluded from the primary analysis. Compared with the patients in the control hospitals \((n = 214)\), the patients in the intervention hospitals \((n = 248)\) received significantly more days of enteral nutrition \((6.7 \text{ v. } 5.4 \text{ per 10 patient-days; } p = 0.042)\). They had a significantly shorter mean stay in hospital \((25 \text{ v. } 35 \text{ days; } p = 0.003)\) and showed a trend toward reduced mortality \((27\% \text{ v. } 37\%; p = 0.058)\). The mean stay in the ICU did not differ between the control and intervention groups \((10.9 \text{ v. } 11.8 \text{ days; } p = 0.7)\).

Interpretation: Implementation of evidence-based recommendations improved the provision of nutritional support and was associated with improved clinical outcomes.

CMAJ 2004;170(2):197-204.

How early is early?

- Early EN defined as **within 24 hours** of injury or ICU admission

Study: Multicentre, cluster randomized clinical trial of algorithms for critical care enteral and parenteral therapy (ACCEPT).

Results: Two hospitals crossed over and were excluded from the primary analysis. Compared with the patients in the control hospitals (n = 214), the patients in the intervention hospitals (n = 248) received significantly more days of enteral nutrition (6.7 v. 5.4 per 10 patient-days; p = 0.042), had a significantly shorter mean stay in hospital (25 v. 35 days; p = 0.003) and showed a trend toward reduced mortality (27% v. 37%; p = 0.058). The mean stay in the ICU did not differ between the control and intervention groups (10.9 v. 11.8 days; p = 0.7).

Interpretation: Implementation of evidence-based recommendations improved the provision of nutritional support and was associated with improved clinical outcomes.

Updated US Guideline: Early EN

All RCTs, Early EN

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN</th>
<th>Delayed/None</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total Events</td>
<td>Weight</td>
</tr>
<tr>
<td>Sagar 1979</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>1</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>Chiarelli 1990</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Schroeder 1991</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Eyer 1993</td>
<td>2</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Beier-Holgersen 1996</td>
<td>2</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Carr 1996</td>
<td>0</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Watters 1997</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Singh 1998</td>
<td>4</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Minard 2000</td>
<td>1</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Pupelis 2000</td>
<td>1</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Pupelis 2001</td>
<td>1</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>Dvorak 2004</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Peck 2004</td>
<td>4</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Malhotra 2004</td>
<td>12</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Moses 2009</td>
<td>3</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>Chourdakis 2012</td>
<td>3</td>
<td>34</td>
<td>2</td>
</tr>
</tbody>
</table>

Total (95% CI):

- Events: 469
- Delayed/None: 467
- Weight: 100.0%
- Risk Ratio: 0.70 [0.49, 1.00]

Heterogeneity:
- Tau² = 0.00
- Chi² = 7.23, df = 15 (P = 0.95); I² = 0%

Test for overall effect: Z = 1.97 (P = 0.05)
Updated US Guideline: Early EN

Zero mortality: do not contribute any information

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN</th>
<th>Delayed/None</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagar 1979</td>
<td>0/15</td>
<td>0/15</td>
<td>Not estimable</td>
<td>1979</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>1/32</td>
<td>2/31</td>
<td>0.48 [0.05, 5.07]</td>
<td>1986</td>
</tr>
<tr>
<td>Chiarelli 1990</td>
<td>0/10</td>
<td>0/10</td>
<td>Not estimable</td>
<td>1990</td>
</tr>
<tr>
<td>Schroeder 1991</td>
<td>0/16</td>
<td>0/16</td>
<td>Not estimable</td>
<td>1991</td>
</tr>
<tr>
<td>Eyer 1993</td>
<td>2/19</td>
<td>2/19</td>
<td>1.00 [0.16, 6.38]</td>
<td>1993</td>
</tr>
<tr>
<td>Beiler-Holgersen 1996</td>
<td>2/30</td>
<td>4/30</td>
<td>0.50 [0.10, 2.53]</td>
<td>1996</td>
</tr>
<tr>
<td>Carr 1996</td>
<td>0/14</td>
<td>1/14</td>
<td>0.33 [0.01, 7.55]</td>
<td>1996</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1/21</td>
<td>3/17</td>
<td>0.27 [0.03, 2.37]</td>
<td>1996</td>
</tr>
<tr>
<td>Watters 1997</td>
<td>0/14</td>
<td>0/14</td>
<td>Not estimable</td>
<td>1997</td>
</tr>
<tr>
<td>Singh 1998</td>
<td>4/21</td>
<td>4/22</td>
<td>1.05 [0.30, 3.66]</td>
<td>1998</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0/14</td>
<td>1/14</td>
<td>0.33 [0.01, 7.55]</td>
<td>1999</td>
</tr>
<tr>
<td>Minard 2000</td>
<td>1/12</td>
<td>4/15</td>
<td>0.31 [0.04, 3.45]</td>
<td>2000</td>
</tr>
<tr>
<td>Pupels 2000</td>
<td>1/11</td>
<td>5/18</td>
<td>0.33 [0.04, 2.45]</td>
<td>2000</td>
</tr>
<tr>
<td>Pupels 2001</td>
<td>1/30</td>
<td>7/30</td>
<td>0.14 [0.02, 1.09]</td>
<td>2001</td>
</tr>
<tr>
<td>Dyvorak 2004</td>
<td>0/7</td>
<td>0/10</td>
<td>Not estimable</td>
<td>2004</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0/27</td>
<td>1/25</td>
<td>0.31 [0.01, 7.26]</td>
<td>2004</td>
</tr>
<tr>
<td>Peck 2004</td>
<td>4/14</td>
<td>5/13</td>
<td>0.74 [0.25, 2.18]</td>
<td>2004</td>
</tr>
<tr>
<td>Malhotra 2004</td>
<td>12/100</td>
<td>16/100</td>
<td>0.75 [0.37, 1.50]</td>
<td>2004</td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6/14</td>
<td>6/14</td>
<td>1.00 [0.43, 2.35]</td>
<td>2008</td>
</tr>
<tr>
<td>Moses 2009</td>
<td>3/30</td>
<td>3/30</td>
<td>1.03 [0.23, 4.71]</td>
<td>2009</td>
</tr>
<tr>
<td>Choudakis 2012</td>
<td>3/34</td>
<td>2/25</td>
<td>1.10 [0.20, 6.12]</td>
<td>2012</td>
</tr>
</tbody>
</table>

Total (95% CI):

- Early EN: 469 events, 467 total
- Delayed/None: 41 events, 56 total

Heterogeneity:
- Tau² = 0.00
- Chi² = 7.23, df = 15 (P = 0.95)
- I² = 0%

Test for overall effect:
- Z = 1.97 (P = 0.05)
Updated US Guideline: Early EN

All RCTs, Early EN

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN Events</th>
<th>Delayed/None Events</th>
<th>Total Events</th>
<th>Total Weight</th>
<th>Risk Ratio M-H, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore 1986</td>
<td>1</td>
<td>32</td>
<td>2</td>
<td>31</td>
<td>0.48 [0.05, 5.07] 1986</td>
</tr>
<tr>
<td>Eyer 1993</td>
<td>2</td>
<td>19</td>
<td>2</td>
<td>19</td>
<td>1.00 [0.16, 6.36] 1993</td>
</tr>
<tr>
<td>Beier-Holgersen 1996</td>
<td>2</td>
<td>30</td>
<td>4</td>
<td>30</td>
<td>0.50 [0.10, 2.53] 1996</td>
</tr>
<tr>
<td>Carr 1996</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0.33 [0.01, 7.55] 1996</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1</td>
<td>21</td>
<td>3</td>
<td>17</td>
<td>0.27 [0.03, 2.37] 1996</td>
</tr>
<tr>
<td>Singh 1998</td>
<td>4</td>
<td>21</td>
<td>4</td>
<td>22</td>
<td>1.05 [0.30, 3.66] 1998</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0.33 [0.01, 7.55] 1999</td>
</tr>
<tr>
<td>Minard 2000</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>0.31 [0.04, 2.44] 2000</td>
</tr>
<tr>
<td>Pupelis 2000</td>
<td>1</td>
<td>11</td>
<td>5</td>
<td>18</td>
<td>0.33 [0.04, 2.45] 2000</td>
</tr>
<tr>
<td>Pupelis 2001</td>
<td>1</td>
<td>30</td>
<td>7</td>
<td>30</td>
<td>0.14 [0.02, 1.09] 2001</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0</td>
<td>27</td>
<td>1</td>
<td>25</td>
<td>0.31 [0.01, 7.26] 2004</td>
</tr>
<tr>
<td>Peck 2004</td>
<td>4</td>
<td>14</td>
<td>5</td>
<td>13</td>
<td>0.74 [0.25, 2.18] 2004</td>
</tr>
<tr>
<td>Malhotra 2004</td>
<td>12</td>
<td>100</td>
<td>16</td>
<td>100</td>
<td>0.75 [0.37, 1.50] 2004</td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>14</td>
<td>1.00 [0.43, 2.35] 2008</td>
</tr>
<tr>
<td>Moses 2009</td>
<td>3</td>
<td>29</td>
<td>3</td>
<td>30</td>
<td>1.03 [0.23, 4.71] 2009</td>
</tr>
<tr>
<td>Chourdakis 2012</td>
<td>3</td>
<td>34</td>
<td>2</td>
<td>25</td>
<td>1.10 [0.20, 6.12] 2012</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>469</td>
<td>467</td>
<td>0.70 [0.49, 1.00]</td>
</tr>
<tr>
<td>Total events</td>
<td>41</td>
<td>66</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 7.23, df = 15 (P = 0.95); I² = 0%
Test for overall effect: Z = 1.97 (P = 0.05)
Updated US Guideline: Early EN

Duplicate publication

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN Events</th>
<th>Delayed/None Events</th>
<th>Total Events Weight</th>
<th>Risk Ratio M-H, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore 1986</td>
<td>1</td>
<td>2</td>
<td>31</td>
<td>0.48 [0.05, 0.07] 1986</td>
</tr>
<tr>
<td>Eyer 1993</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>1.00 [0.16, 6.38] 1993</td>
</tr>
<tr>
<td>Beiler-Holgersen 1996</td>
<td>2</td>
<td>4</td>
<td>30</td>
<td>0.50 [0.10, 2.53] 1996</td>
</tr>
<tr>
<td>Carr 1996</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>0.33 [0.01, 7.55] 1996</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0.27 [0.03, 2.37] 1996</td>
</tr>
<tr>
<td>Singh 1998</td>
<td>4</td>
<td>4</td>
<td>22</td>
<td>1.05 [0.30, 3.66] 1998</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>0.33 [0.01, 7.55] 1999</td>
</tr>
<tr>
<td>Minard 2000</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>0.31 [0.04, 2.44] 2000</td>
</tr>
<tr>
<td>Pupelis 2000</td>
<td>1</td>
<td>5</td>
<td>18</td>
<td>0.33 [0.04, 2.45] 2000</td>
</tr>
<tr>
<td>Pupelis 2001</td>
<td>1</td>
<td>7</td>
<td>30</td>
<td>0.14 [0.02, 1.09] 2001</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>0.31 [0.01, 7.26] 2004</td>
</tr>
<tr>
<td>Peck 2004</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>0.74 [0.25, 2.18] 2004</td>
</tr>
<tr>
<td>Malhotra 2004</td>
<td>12</td>
<td>16</td>
<td>100</td>
<td>0.75 [0.37, 1.50] 2004</td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6</td>
<td>6</td>
<td>14</td>
<td>1.00 [0.43, 2.35] 2008</td>
</tr>
<tr>
<td>Moses 2009</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>1.03 [0.23, 4.71] 2009</td>
</tr>
<tr>
<td>Chourdakis 2012</td>
<td>3</td>
<td>2</td>
<td>25</td>
<td>1.10 [0.20, 6.12] 2012</td>
</tr>
</tbody>
</table>

Total (95% CI) 469 467 100.0% 0.70 [0.49, 1.00]

Total events 41 66

Heterogeneity: Tau² = 0.00; Chi² = 7.23, df = 15 (P = 0.95); I² = 0%

Test for overall effect: Z = 1.97 (P = 0.05)
Pupelis 2000 vs Pupelis 2001

Pupelis 2000:
Mortality
1/11 early EN vs 5/18 standard care

Pupelis 2001:
Mortality
1/30 early EN vs 6/30 standard care

enteral group and the controls (Fig. 2). Of the 11 patients with severe pancreatitis who were given enteral nutrition, five developed a paralytic ileus, one of whom developed complete necrotic obstruction of the sigmoid colon. He died on the 45th day (despite many interventions including a colostomy) having been given enteral nutrition for 41 days (mean daily intake 1052 ml, total 43,150 ml). Another patient developed necrosis of the transverse colon, but

The only patient in the JF group who died was admitted with a partly ruptured pancreatic gland after trauma and total enzymatic peritonitis. Emergency surgical intervention was performed. The patient subsequently experienced two repeated reexplorations of the abdominal cavity because of unresolved peritonitis, intestinal fistula, and obstruction of the left side colon. The patient developed MODS and died from profuse gastrointestinal bleeding on 45 d after admission. Despite a very complicated clinical course, it was possible to provide 43 L of the feeding formula jejunally for this patient.
Updated US Guideline: Early EN
Surgical patients, not managed in ICU

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN Events</th>
<th>Total Events</th>
<th>Delayed/None Events</th>
<th>Total Events</th>
<th>Risk Ratio M-H, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore 1986</td>
<td>1</td>
<td>32</td>
<td>2</td>
<td>31</td>
<td>0.48 [0.05, 5.07] 1986</td>
</tr>
<tr>
<td>Bjer-Holgersen 1996</td>
<td>2</td>
<td>30</td>
<td>4</td>
<td>30</td>
<td>0.50 [0.10, 2.53] 1996</td>
</tr>
<tr>
<td>Carr 1996</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0.33 [0.01, 7.55] 1996</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1</td>
<td>21</td>
<td>3</td>
<td>17</td>
<td>0.27 [0.03, 2.37] 1996</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0.33 [0.01, 7.55] 1999</td>
</tr>
<tr>
<td>Pupells 2001</td>
<td>1</td>
<td>30</td>
<td>7</td>
<td>30</td>
<td>0.14 [0.02, 1.09] 2001</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0</td>
<td>27</td>
<td>1</td>
<td>25</td>
<td>0.31 [0.01, 7.26] 2004</td>
</tr>
<tr>
<td>Peck 2004</td>
<td>4</td>
<td>14</td>
<td>5</td>
<td>13</td>
<td>0.74 [0.25, 2.18] 2004</td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>14</td>
<td>1.00 [0.43, 2.35] 2008</td>
</tr>
</tbody>
</table>

Total (95% CI) | 469 | 467 | 100.0% | 0.70 [0.49, 1.00]

Total events: 41 | 66

Heterogeneity: Tau² = 0.00; Chi² = 7.23, df = 15 (P = 0.95); I² = 0%
Test for overall effect: Z = 1.97 (P = 0.05)
Updated US Guideline: Early EN

All RCTs, Early EN
Updated US Guideline: Early EN

RCTs defining Early EN as < 48 h

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN Events</th>
<th>Delayed/None Events</th>
<th>Total Events</th>
<th>Weight</th>
<th>Risk Ratio (M-H, Random, 95% CI)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore 1986</td>
<td>1</td>
<td>32</td>
<td>31</td>
<td>2.3%</td>
<td>0.48 [0.05, 5.07]</td>
<td>1986</td>
</tr>
<tr>
<td>Eyer 1993</td>
<td>2</td>
<td>19</td>
<td>21</td>
<td>3.7%</td>
<td>1.00 [0.16, 6.30]</td>
<td>1993</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1</td>
<td>21</td>
<td>22</td>
<td>2.7%</td>
<td>0.27 [0.03, 2.37]</td>
<td>1996</td>
</tr>
<tr>
<td>Singh 1998</td>
<td>4</td>
<td>21</td>
<td>25</td>
<td>8.2%</td>
<td>1.05 [0.30, 3.66]</td>
<td>1998</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>0</td>
<td>14</td>
<td>14</td>
<td>1.3%</td>
<td>0.33 [0.01, 7.55]</td>
<td>1999</td>
</tr>
<tr>
<td>Minard 2000</td>
<td>1</td>
<td>12</td>
<td>15</td>
<td>3.0%</td>
<td>0.31 [0.04, 2.44]</td>
<td>2000</td>
</tr>
<tr>
<td>Pupells 2001</td>
<td>1</td>
<td>30</td>
<td>31</td>
<td>3.1%</td>
<td>0.14 [0.02, 1.09]</td>
<td>2001</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0</td>
<td>27</td>
<td>25</td>
<td>1.3%</td>
<td>0.31 [0.01, 7.26]</td>
<td>2004</td>
</tr>
<tr>
<td>Peck 2004</td>
<td>4</td>
<td>14</td>
<td>13</td>
<td>11.0%</td>
<td>0.74 [0.25, 2.18]</td>
<td>2004</td>
</tr>
<tr>
<td>Malhotra 2004</td>
<td>12</td>
<td>100</td>
<td>110</td>
<td>26.5%</td>
<td>0.93 [0.37, 2.50]</td>
<td>2004</td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>17.5%</td>
<td>0.82 [0.43, 1.50]</td>
<td>2008</td>
</tr>
<tr>
<td>Moses 2009</td>
<td>3</td>
<td>29</td>
<td>32</td>
<td>5.6%</td>
<td>1.03 [0.28, 4.37]</td>
<td>2009</td>
</tr>
<tr>
<td>Chourdakis 2012</td>
<td>3</td>
<td>34</td>
<td>37</td>
<td>4.4%</td>
<td>1.10 [0.20, 6.12]</td>
<td>2012</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>469</td>
<td>467</td>
<td>100.0%</td>
<td>0.70</td>
<td>[0.49, 1.00]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>41</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 7.23, df = 15 (P = 0.95); I² = 0%

Test for overall effect: Z = 1.97 (P = 0.05)
Updated US Guideline: Early EN
All RCTs, Early EN < 24 h (same as our 2009 publication)
Updated US Guideline: Early EN

RCTs, Early EN < 48 h

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN Events</th>
<th>Total</th>
<th>Delayed/None Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagar 1979</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>Not estimable</td>
<td>1979</td>
</tr>
<tr>
<td>Chiarelli 1990</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>Not estimable</td>
<td>1990</td>
</tr>
<tr>
<td>Schroeder 1991</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>Not estimable</td>
<td>1991</td>
</tr>
<tr>
<td>Eyer 1993</td>
<td>2</td>
<td>19</td>
<td>2</td>
<td>19</td>
<td>3.7%</td>
<td>1.00 [0.16, 6.39] 1993</td>
</tr>
<tr>
<td>Watters 1997</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>Not estimable</td>
<td>1997</td>
</tr>
<tr>
<td>Singh 1998</td>
<td>4</td>
<td>21</td>
<td>4</td>
<td>22</td>
<td>8.2%</td>
<td>1.05 [0.30, 3.66] 1998</td>
</tr>
<tr>
<td>Minard 2000</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>3.0%</td>
<td>0.31 [0.04, 2.44] 2000</td>
</tr>
<tr>
<td>Dvorak 2004</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td>Not estimable</td>
<td>2004</td>
</tr>
<tr>
<td>Malhotra 2004</td>
<td>12</td>
<td>100</td>
<td>16</td>
<td>100</td>
<td>26.5%</td>
<td>0.75 [0.37, 1.50] 2004</td>
</tr>
<tr>
<td>Moses 2009</td>
<td>3</td>
<td>29</td>
<td>3</td>
<td>30</td>
<td>5.6%</td>
<td>1.03 [0.23, 4.71] 2009</td>
</tr>
<tr>
<td>Chourdakis 2012</td>
<td>3</td>
<td>34</td>
<td>2</td>
<td>25</td>
<td>4.4%</td>
<td>1.10 [0.20, 6.12] 2012</td>
</tr>
</tbody>
</table>

Total events: 41, 66

Heterogeneity: Tau² = 0.00; Chi² = 7.23, df = 15 (P = 0.95); I² = 0%

Test for overall effect: Z = 1.97 (P = 0.05)
Updated US Guideline: Early EN

RCTs, Early EN < 48 h

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early EN</th>
<th>Delayed/None</th>
<th>Risk Ratio M-H, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watters 1997</td>
<td>0</td>
<td>14</td>
<td>Not estimable 1997</td>
</tr>
<tr>
<td>Singh 1998</td>
<td>4</td>
<td>21</td>
<td>1.05 [0.30, 3.66] 1998</td>
</tr>
<tr>
<td>Malhotra 2004</td>
<td>12</td>
<td>100</td>
<td>0.75 [0.37, 1.50] 2004</td>
</tr>
<tr>
<td>Moses 2009</td>
<td>3</td>
<td>29</td>
<td>1.03 [0.23, 4.71] 2009</td>
</tr>
<tr>
<td>Chourdakis 2012</td>
<td>3</td>
<td>34</td>
<td>1.10 [0.20, 6.12] 2012</td>
</tr>
</tbody>
</table>

Total events: 41 / 66

Heterogeneity: Tau² = 0.00; Chi² = 7.23, df = 15 (P = 0.95); I² = 0%

Test for overall effect: Z = 1.97 (P = 0.05)
How was early (< 24 h) EN initiation achieved?

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiarelli 1990</td>
<td>Thermal injury (25% to 60% TBSA). No inhalational injury. Mean survival probability 0.73±0.10.</td>
<td>Immediately after admission: 50 ml/h ‘homemade’ EN (1900kcal/L and 79 g protein/L) via NGT increasing over 3-4 days. Goals set with Currenri formula. Rate did not exceed 150 ml/h.</td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>Trauma (ISS > 20 and < 40). Mean ISS 29±1.5</td>
<td>Immediately after resuscitation or surgery: 30 mls/h ¾-strength EN (Traumacal™) via NGT, concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met.</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Trauma (ISS > 25) Mean ISS 33.6±10 Mean APACHE II 11.5±5.8</td>
<td>Immediately after resuscitation: EN (Jevity™) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1, 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2 – 0.3 g nitrogen / kg per day at 72 hours post ICU admission. TPN was added to meet estimated requirements.</td>
</tr>
<tr>
<td>Pupelis 2001</td>
<td>Severe pancreatitis and peritonitis Mean APACHE II 11.5±5.4</td>
<td>Within 12 h of surgery: EN (Nutrison Standard™ or Nutrison Pepti™) via NJT started at 20-25ml/h. Increase based in individual tolerance to 1 L per day by Day 3 post-op. Patients also received an average of 500kcaes/day from IV dextrose.</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Trauma (ISS > 20). Mean APACHE II 11.3±4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg.</td>
</tr>
<tr>
<td>Nguyen 2008</td>
<td>Mechanically ventilated ICU patients APACHE II 22.4±1.2</td>
<td>Within 24 h of admission: EN via NGT at 40 ml/h and increased by 20ml/h q6h to goal, if tolerated (aspirates <250mls). Goal was determined by a dietician, based on patient’s BMI.</td>
</tr>
</tbody>
</table>