Protein dosing in the ICU:
How much, when and why?

Dr. Gordon S. Doig,
Associate Professor in Intensive Care
Northern Clinical School Intensive Care Research Unit,
University of Sydney, Sydney, Australia
gdoig@med.usyd.edu.au
www.EvidenceBased.net

© 2015, University of Sydney, Not for reproduction or distribution.
Overview of Talk

- Context
 - Levels of Evidence
 - Types of Outcomes
- Guideline Recommendations
- Current Evidence
- New Evidence
- Summary
Editorials, Expert Opinion

Case Series, Case Reports

Editorials, Expert Opinion

Smaller treatment effects

Patient vs. Disease oriented outcomes

Patient vs. Disease oriented outcomes

A patient oriented outcome is defined as a direct measure of how a patient feels, functions or survives.

Patient vs. Disease oriented outcomes

A patient oriented outcome is defined as a direct measure of how a patient feels, functions or survives.

A disease oriented outcome is a laboratory measurement or a physical sign used as a substitute for a patient oriented outcome.

Patient vs. Disease oriented outcomes

A **patient oriented outcome** is defined as a direct measure of how a patient feels, functions or survives.

A **disease oriented outcome** is a laboratory measurement or a physical sign used as a substitute for a patient oriented outcome.

Improvements in disease oriented outcomes do not always lead to improvements in patient oriented outcomes.

Patient vs. Disease oriented outcomes

A patient oriented outcome is defined as a direct measure of how a patient feels, functions or survives.

A disease oriented outcome is a laboratory measurement or a physical sign used as a substitute for a patient oriented outcome.

Improvements in disease oriented outcomes do not always lead to improvements in patient oriented outcomes.

Before new drugs can be licensed using disease oriented outcomes, FDA requires a definitive clinical trial demonstrating an improvement in a disease oriented outcome leads to an improvement in a patient oriented outcome.

Patient vs. Disease oriented outcomes

A *patient oriented outcome* is defined as a direct measure of how a patient feels, functions or survives.

A *disease oriented outcome* is a laboratory measurement or a physical sign used as a *substitute* for a patient oriented outcome.

Improvements in disease oriented outcomes do not always lead to improvements in patient oriented outcomes.

Before new drugs can be licensed using disease oriented outcomes, FDA requires a definitive clinical trial demonstrating an improvement in a disease oriented outcome leads to an improvement in a patient oriented outcome.

- No measures of ‘nutritional efficacy’ (Nitrogen balance, caloric intake, percent calories from EN, body composition etc) fulfill this FDA requirement.

Guideline recommendations
Guideline recommendations

ESPEN Guidelines on Parenteral Nutrition: Intensive care

Pierre Singera, Mette M. Bergerb, Greet Van den Berghec, Gianni Biolod, Philip Caldere, Alastair Forbesf, Richard Griffithsg, Georg Kreymanh, Xavier Levervei, Claude Pichardj

Guideline recommendations

1.3–1.5 g/kg ideal body weight per day in conjunction with an adequate energy supply (Grade B)

ESPEN Guidelines on Parenteral Nutrition: Intensive care

Pierre Singer, Mette M. Berger, Greet Van den Berghe, Gianni Biolo, Philip Calder, Alastair Forbes, Richard Griffiths, Georg Kreyman, Xavier Leverve, Claude Pichard

1.3–1.5 g/kg ideal body weight per day in conjunction with an adequate energy supply (Grade B)

- Grade B: At least one well-designed controlled trial without randomization, a quasi-experimental study or observational study

Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary

Robert G. Martindale, MD, PhD; Stephen A. McClave, MD; Vincent W. Vanek, MD; Mary McCarthy, RN, PhD; Pamela Roberts, MD; Beth Taylor, RD; Juan B. Ochoa, MD; Lena Napolitano, MD; Gail Cresci, RD; American College of Critical Care Medicine; and the A.S.P.E.N. Board of Directors
Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary*

Robert G. Martindale, MD, PhD; Stephen A. McClave, MD; Vincent W. Vanek, MD; Mary McCarthy, RN, PhD; Pamela Roberts, MD; Beth Taylor, RD; Juan B. Ochoa, MD; Lena Napolitano, MD; Gail Cresci, RD; American College of Critical Care Medicine; and the A.S.P.E.N. Board of Directors

1.2–2.0 g/kg actual body weight per day (Grade E)
ASPEN guideline recommendations

1.2–2.0 g/kg actual body weight per day (Grade E)

- Grade E: supported by nonrandomized, historical controls, case series, uncontrolled studies, and expert opinion

Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary*

Robert G. Martindale, MD, PhD; Stephen A. McClave, MD; Vincent W. Vanek, MD; Mary McCarthy, RN, PhD; Pamela Roberts, MD; Beth Taylor, RD; Juan B. Ochoa, MD; Lena Napolitano, MD; Gail Cresci, RD; American College of Critical Care Medicine; and the A.S.P.E.N. Board of Directors

RCTs
Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie¹,², Samantha Rand², Sharon Palmer³

<table>
<thead>
<tr>
<th>Condition</th>
<th>Requirement</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critically ill</td>
<td>1.2 - 1.5</td>
<td>ESPEN [29]</td>
</tr>
<tr>
<td></td>
<td>1.2 - 2.0</td>
<td>ASPEN [31]</td>
</tr>
<tr>
<td></td>
<td>1.1 - 1.3</td>
<td>Mesejo [68]</td>
</tr>
<tr>
<td>Continuous renal replacement therapy</td>
<td>≥2.0</td>
<td>Scheinkestel [69]</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1.2 - 2.3</td>
<td>Greig [70], McCowen [71]</td>
</tr>
<tr>
<td>Obese critically ill (permissive underfeeding: reduced energy intake)</td>
<td>BMI 30 - 40</td>
<td>≥2 g/kgIBW</td>
</tr>
<tr>
<td></td>
<td>BMI > 40</td>
<td>≥2.5 g/kgIBW</td>
</tr>
</tbody>
</table>

RCTs

Identified 6 parallel group protein dosing trials in ICU populations:

RCTs

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group

RCTs

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie\(^1,2\)*, Samantha Rand\(^2\), Sharon Palmer\(^3\)

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, **10 patients per group**
- Huang 1990, acute head injury, N=60, **20 patients per group**

RCTs

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie¹,², Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group

RCTs

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group
- Twyman 1985, head injury, N=21, 10 per patients group

RCTs

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie1,2, Samantha Rand2, Sharon Palmer3

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, \textit{10 patients per group}
- Huang 1990, acute head injury, N=60, \textit{20 patients per group}
- Larsson 1990, trauma or burns, N = 39, \textit{less than 10 patients per group}
- Twyman 1985, head injury, N=21, \textit{10 per patients group}
- Grieg 1987, sepsis, N=9, \textit{5 patients per group}

RCTs

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group
- Twyman 1985, head injury, N=21, 10 per patients group
- Grieg 1987, sepsis, N=9, 5 patients per group
- Mesejo 2003, critically ill, N=50, 25 patients per group.

RCTs

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group
- Twyman 1985, head injury, N=21, 10 per patients group
- Grieg 1987, sepsis, N=9, 5 patients per group
- Mesejo 2003, critically ill, N=50, 25 patients per group.

None reported any positive effects on patient oriented outcomes.

New data

- Observational study conducted in 167 ICUs across 21 countries

New data

- Observational study conducted in 167 ICUs across 21 countries

New data

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients

New data

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)

New data

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 - Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.

New data

• Observational study conducted in 167 ICUs across 21 countries
• 2,772 mechanically ventilated critically ill patients
• Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 • Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.

Most hospital formulas use a fixed ratio of protein to energy.

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index.
All lines slope down and to the right (decreased mortality as energy increases), we should conclude that **ALL classes of BMI benefit**, however some benefit more than others.

Observational study conducted in 167 ICUs across 21 countries

2,772 mechanically ventilated critically ill patients

Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)

- Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.

New data

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 - Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.
- Appropriate interpretation of Figure 1 shows *benefit from increased caloric intake is present in all BMI classes!!!*

• Observational study conducted in 167 ICUs across 21 countries
• 2,772 mechanically ventilated critically ill patients
• Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 • Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.
• Appropriate interpretation of Figure 1 shows benefit from increased caloric intake is present in all BMI classes!!!
• A ‘Figure 1’ for protein was not presented, but throughout the paper the ‘protein’ effect mirrors the ‘energy effect’.

Conclusions (Take home message)

www.EvidenceBased.net
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is **NOT** restricted to patients with low BMI.

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

www.EvidenceBased.net
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
Conclusions (Take home message)

• Observational studies suggest patients may benefit from ‘more’ protein.
 • This potential benefit is NOT restricted to patients with low BMI.

• Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 • Some form of adjustment to IBW at a BMI threshold is also reasonable.

• Should I supplement if the patient does not achieve 1.2 g/kg?
Conclusions (Take home message)

• Observational studies suggest patients may benefit from ‘more’ protein.
 • This potential benefit is NOT restricted to patients with low BMI.

• Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 • Some form of adjustment to IBW at a BMI threshold is also reasonable.

• Should I supplement if the patient does not achieve 1.2 g/kg?
 • No compelling evidence establishes 1.2 g/kg as the minimal required dose.
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.
- Should I supplement everyone to achieve 2.0 g/kg?
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is **NOT** restricted to patients with low BMI.
- Daily protein targets between **1.2–2.0 g/kg**, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve **1.2 g/kg**?
 - No compelling evidence establishes **1.2 g/kg** as the minimal required dose.
- Should I supplement everyone to achieve **2.0 g/kg**?
 - We just completed a 474 patient RCT addressing this question.

www.EvidenceBased.net
Conclusions (Take home message)

• Observational studies suggest patients may benefit from ‘more’ protein.
 • This potential benefit is **NOT** restricted to patients with low BMI.

• **Daily protein targets between 1.2–2.0 g/kg, are reasonable.**
 • Some form of adjustment to IBW at a BMI threshold is also reasonable.

• **Should I supplement if the patient does not achieve 1.2 g/kg?**
 • No compelling evidence establishes 1.2 g/kg as the minimal required dose.

• **Should I supplement everyone to achieve 2.0 g/kg?**
 • We just completed a 474 patient RCT addressing this question.
 • Patients with unstable renal function at ICU admission **may not** benefit from higher-end protein dosing (2.0 g/kg).

www.EvidenceBased.net
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is **NOT** restricted to patients with low BMI.

- Daily protein targets between **1.2–2.0 g/kg**, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.

- Should I supplement if the patient does not achieve **1.2 g/kg**?
 - No compelling evidence establishes **1.2 g/kg** as the minimal required dose.

- Should I supplement everyone to achieve **2.0 g/kg**?
 - We just completed a 474 patient RCT addressing this question.
 - Patients with unstable renal function at ICU admission **may not** benefit from higher-end protein dosing (2.0 g/kg).
 - But patients without renal dysfunction did show a mortality reduction!!
Conclusions (Take home message)

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is **NOT** restricted to patients with low BMI.
- **Daily protein targets between 1.2–2.0 g/kg, are reasonable.**
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- **Should I supplement if the patient does not achieve 1.2 g/kg?**
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.
- **Should I supplement everyone to achieve 2.0 g/kg?**
 - We just completed a 474 patient RCT addressing this question.
 - Patients with unstable renal function at ICU admission may not benefit from higher-end protein dosing (2.0 g/kg).
 - But patients without renal dysfunction did show a mortality reduction!!

Protein dosing is a hot topic and may lead to reduced mortality. We need more well done multi-centre RCTs focussed on patient oriented outcomes to refine our target range.

www.EvidenceBased.net
Questions?

- Observational studies suggest patients may benefit from ‘more’ protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.
- Should I supplement everyone to achieve 2.0 g/kg?
 - We just completed a 474 patient RCT addressing this question.
 - Patients with unstable renal function at ICU admission may not benefit from higher-end protein dosing (2.0 g/kg).
 - But patients without renal dysfunction did show a mortality reduction!!

Protein dosing is a hot topic and may lead to reduced mortality. We need more well done multi-centre RCTs focussed on patient oriented outcomes to refine our target range.

www.EvidenceBased.net
The interpretation of interactions in logistic regression models is complex.

Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not linear over all values of the interacting variables.

To properly interpret a logistic interaction term, we need to look at all levels of both variables in the interaction term.

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. BMI body mass index.

- The interpretation of interactions in logistic regression models is complex.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not linear over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at all levels of both variables in the interaction term.
- Figure 1 presents all levels of Energy Intake.
The interpretation of interactions in logistic regression models is complex.

Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not linear over all values of the interacting variables.

To properly interpret a logistic interaction term, we need to look at all levels of both variables in the interaction term.

Figure 1 presents all levels of Energy Intake and all classes of BMI.

Table 1

<table>
<thead>
<tr>
<th>BMI group</th>
<th>Unadjusted (n = 2,772)</th>
<th>95% CI LCL</th>
<th>95% CI UCL</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.73</td>
<td>0.62</td>
<td>0.87</td>
<td>0.001</td>
</tr>
<tr>
<td><20</td>
<td>0.48</td>
<td>0.28</td>
<td>0.83</td>
<td>0.009</td>
</tr>
<tr>
<td>20 to <25</td>
<td>0.61</td>
<td>0.45</td>
<td>0.82</td>
<td>0.001</td>
</tr>
<tr>
<td>25 to <30</td>
<td>1.01</td>
<td>0.75</td>
<td>1.36</td>
<td>0.960</td>
</tr>
<tr>
<td>30 to <35</td>
<td>0.84</td>
<td>0.54</td>
<td>1.30</td>
<td>0.439</td>
</tr>
<tr>
<td>35 to <40</td>
<td>0.47</td>
<td>0.23</td>
<td>0.95</td>
<td>0.036</td>
</tr>
<tr>
<td>≥40</td>
<td>0.78</td>
<td>0.41</td>
<td>1.47</td>
<td>0.442</td>
</tr>
</tbody>
</table>

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. BMI body mass index.

The interpretation of interactions in logistic regression models is complex.

Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not linear over all values of the interacting variables.

To properly interpret a logistic interaction term, we need to look at all levels of both variables in the interaction term.

Figure 1 presents all levels of Energy Intake and all classes of BMI.

Table 5 only presents only one level of Energy Intake.

The interpretation of interactions in logistic regression models is complex.

Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not linear over all values of the interacting variables.

To properly interpret a logistic interaction term, we need to look at all levels of both variables in the interaction term.

Figure 1 presents all levels of Energy Intake and all classes of BMI.

Table 5 only presents only one level of Energy Intake.

The interpretation of interactions in logistic regression models is complex.

Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not linear over all values of the interacting variables.

To properly interpret a logistic interaction term, we need to look at all levels of both variables in the interaction term.

Figure 1 presents all levels of Energy Intake and all classes of BMI.

Table 5 only presents only one level of Energy Intake.