Understanding the benefits of early enteral nutrition in the major trauma patient requiring intensive care: From clinical trials to costs.

Dr. Gordon S. Doig
Associate Professor in Intensive Care
Northern Clinical School Intensive Care Research Unit,
University of Sydney, Sydney, Australia
www.EvidenceBased.net
gdoig@med.usyd.edu.au

© 2016, University of Sydney, Not for reproduction or distribution.
Summary of this talk

- Provide a context.
- Review the most recent clinical evidence.
- Generate concise clinical recommendations.
- Summarize.
Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularized in the mid ‘80s.

Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularized in the mid ‘80s.
- Five major ICU CPGs recommend early EN.

Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularized in the mid ‘80s.
- Five major ICU CPGs recommend early EN.
 - Canadian guideline,
 - ACCEPT guideline (also Canadian),
 - Australian and New Zealand guideline,
 - European (ESPEN) guideline and
 - American (ASPEN and SCCM) guideline

The concept of ‘early’ enteral feeding was popularized in the mid ‘80s.

Five major ICU CPGs recommend *early* EN.

One major trauma CPG recommends *early* EN.
Background: Review of the Guidelines

- The concept of ‘early’ enteral feeding was popularized in the mid ‘80s.
- Five major ICU CPGs recommend early EN.
- One major trauma CPG recommends early EN.

“enteral feeding can be instituted in most patients after resuscitation is complete and hemodynamic stability has been gained.”

Early EN in trauma: Direct evidence
Early EN in trauma: Direct evidence

Early EN in trauma: Direct evidence

- RCT's conducted in:
 - adult trauma patients requiring intensive care and;
 - standard EN begun within 24hrs of injury compared to standard care (oral intake upon return of bowel sounds, TPN, or TPN + delayed EN);
 - conducted an extensive electronic literature search

Early EN in trauma: Direct evidence

Table 2
Characteristics of eligible studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
<th>Control intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul 1996</td>
<td>Severe trauma (ISS >20 and <40) Mean ISS 29 ± 1.5</td>
<td>Immediately after resuscitation or surgery: 30 mls/h 3/4 strength EN (Traumacal<sup>TM</sup>) via NGT, concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met</td>
<td>5% dextrose/NSS for maintenance. Oral intake commenced upon return of bowel sounds</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Multiple trauma (ISS >25) Mean ISS 33.6 ± 10 Mean APACHE II 11.5 ± 5.8</td>
<td>Immediately after resuscitation: EN (Jeauty<sup>TM</sup>) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1, 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2-0.3 g nitrogen/kg per day at 72 h post-ICU admission. TPN was added to meet estimated requirements</td>
<td>Same protocol as Early EN except EN begun a median 41.4 (33.9–53.6 range) hours after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Multiple trauma (ISS >20) Mean APACHE II 11.3 ± 4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg</td>
<td>Same protocol as Early EN except EN begun 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>Major abdominal trauma (ATI >15)</td>
<td>Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72 h</td>
<td>5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time</td>
</tr>
</tbody>
</table>

Early EN in trauma: Direct evidence

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
<th>Control intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul 1996</td>
<td>Severe trauma (ISS >20 and <40) Mean ISS 29 ± 1.5</td>
<td>Immediately after resuscitation or surgery: 30 mls/h 3/4 strength EN (TraumacalTM) via NGT. Concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met</td>
<td>5% dextrose/NS for maintenance. Oral intake commenced upon return of bowel sounds</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Multiple trauma (ISS >25) Mean ISS 33.6 ± 10 Mean APACHE II 11.5 ± 5.8</td>
<td>Immediately after resuscitation: EN (JevityTM) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1. 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2-0.3 g nitrogen/kg per day at 72 h post-ICU admission. TPN was added to meet estimated requirements</td>
<td>Same protocol as Early EN except EN begun a median 41.4 (33.9–53.6 range) hours after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Multiple trauma (ISS >20) Mean APACHE II 11.3 ± 4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg</td>
<td>Same protocol as Early EN except EN begun 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>Major abdominal trauma (ATI >15)</td>
<td>Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72 h</td>
<td>5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time</td>
</tr>
</tbody>
</table>

Early EN in trauma: Direct evidence

Table 2

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
<th>Control intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul 96</td>
<td>Severe trauma (ISS >20 and <40) Mean ISS 29 ± 1.5</td>
<td>Immediately after resuscitation or surgery: 30 ml/h 3/4 strength EN (Traumacal™) via NGT, concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met</td>
<td>5% dextrose/NSS for maintenance. Oral intake commenced upon return of bowel sounds</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Multiple trauma (ISS > 25) Mean ISS 33.6 ± 10 Mean APACHE II 11.5 ± 5.8</td>
<td>Immediately after resuscitation: EN (Jevelity™) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1, 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2-0.3 g nitrogen/kg per day at 72h post-ICU admission. TPN was added to meet estimated requirements</td>
<td>Same protocol as Early EN except EN begun a median 41.4 (33.9–53.6 range) hours after trauma. Note: 50% of goal received via TPN for first 24h before EN was begun</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Multiple trauma (ISS >20) Mean APACHE II 11.3 ± 4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg</td>
<td>Same protocol as Early EN except EN begun 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24h before EN was begun</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>Major abdominal trauma (ATI > 15)</td>
<td>Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72h</td>
<td>5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time</td>
</tr>
</tbody>
</table>

Early EN intervention

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
<th>Control intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul 1996</td>
<td>Severe trauma (ISS >20 and <40) Mean ISS 29 ± 1.5</td>
<td>Immediately after resuscitation or surgery 30 mls/h 3/4 strength EN (Traumacal™) via NGT; concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met</td>
<td>5% dextrose/NSS for maintenance. Oral intake commenced upon return of bowel sounds</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Multiple trauma (ISS >25) Mean ISS 33.6 ± 10 Mean APACHE II 11.5 ± 5.8</td>
<td>Immediately after resuscitation: EN (Jevity™) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1, 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2-0.3 g nitrogen/kg per day at 72 h post-ICU admission. TPN was added to meet estimated requirements</td>
<td>Same protocol as Early EN except EN begun a median 41.4 (33.9–53.6 range) hours after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Multiple trauma (ISS >20) Mean APACHE II 11.3 ± 4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg</td>
<td>Same protocol as Early EN except EN begun 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>Major abdominal trauma (ATI > 15)</td>
<td>Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72h</td>
<td>5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time</td>
</tr>
</tbody>
</table>
Early EN in trauma: Direct evidence

Table 2
Characteristics of eligible studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
<th>Control intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul 1996</td>
<td>Severe trauma (ISS >20 and <40) Mean ISS 29 ± 1.5</td>
<td>Immediately after resuscitation or surgery: 30 ml/h 3/4 strength EN (Traumacal™) via NGT, concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met.</td>
<td>5% dextrose/NS for maintenance. Oral intake commenced upon return of bowel sounds</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Multiple trauma (ISS > 25) Mean ISS 33.6 ± 10 Mean APACHE II 11.5 ± 5.8</td>
<td>Immediately after resuscitation: EN (Jevity™) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1, 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2-0.3 g nitrogen/kg per day at 72 h post-ICU admission. TPN was added to meet estimated requirements.</td>
<td>Same protocol as Early EN except EN begun a median 41.4 (33.9–53.6 range) hours after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun.</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Multiple trauma (ISS >20) Mean APACHE II 11.3 ± 4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg.</td>
<td>Same protocol as Early EN except EN begun 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun.</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>Major abdominal trauma (ATI > 15)</td>
<td>Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72 h.</td>
<td>5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time.</td>
</tr>
</tbody>
</table>

Early EN in trauma: Direct evidence

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
<th>Control intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul 1996</td>
<td>Severe trauma (ISS >20 and <40) Maine ISS 29 ± 1.5</td>
<td>Immediately after resuscitation or surgery: 30 mls/h 3/4 strength EN (Trumacal™) via NGT, concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met.</td>
<td>Same protocol as Early EN except EN begun a median 41.4 (33.9–53.6 range) hours after trauma. Note: 50% of goal received via TPN for first 24h before EN was begun. Oral intake commenced upon return of bowel sounds.</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Multiple trauma (ISS > 25) Mean ISS 33.6 ± 10, Mean APACHE II 11.5 ± 5.8</td>
<td>Immediately after resuscitation: EN (Jevity™) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1, 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2-0.3 g nitrogen/kg per day at 72h post-ICU admission. TPN was added to meet estimated requirements.</td>
<td>Same protocol as Early EN except EN begun at 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24h before EN was begun.</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Multiple trauma (ISS >20) Mean APACHE II 11.3 ± 4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg</td>
<td>Same protocol as Early EN except EN begun at 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24h before EN was begun.</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>Major abdominal trauma (ATI > 15)</td>
<td>Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72h</td>
<td>5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time.</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Early EN intervention</th>
<th>Control intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuntrasakul 1996</td>
<td>Severe trauma (ISS >20 and <40) Mean ISS 29 ± 1.5</td>
<td>Immediately after resuscitation or surgery: 30 ml/h 3/4 strength EN (Traumacal™) via NGT, concentration increased over time. Goals estimated using modified Harris-Benedict equation. TPN was added if goals were not met</td>
<td>5% dextrose/NS for maintenance. Oral intake commenced upon return of bowel sounds</td>
</tr>
<tr>
<td>Kompan 1999</td>
<td>Multiple trauma (ISS >25) Mean ISS 33.6 ± 10 Mean APACHE II 11.5 ± 5.8</td>
<td>Immediately after resuscitation: EN (Jevity™) started at 20 ml/h via NGT. Increased to 50% of estimated goal on Day 1, 75% of estimated goal on Day 2 and 100% of goal on Day 3. Estimated goal was set at 25-35 nonprotein kcal/kg per day and 0.2-0.3 g nitrogen/kg per day at 72 h post-ICU admission. TPN was added to meet estimated requirements</td>
<td>EN begun a median 41.4 (33.9–53.6 range) hours after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>Multiple trauma (ISS >20) Mean APACHE II 11.3 ± 4.8</td>
<td>Immediately after resuscitation: Same protocol as Kompan 1999 except goal set at an average of 25 nonprotein kcal/kg</td>
<td>EN begun 38.5 ± 15.6 h after trauma. Note: 50% of goal received via TPN for first 24 h before EN was begun</td>
</tr>
<tr>
<td>Moore 1986</td>
<td>Major abdominal trauma (ATI >15)</td>
<td>Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50 ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125 ml/h) at 72 h</td>
<td>5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time</td>
</tr>
</tbody>
</table>
Early EN in trauma: Direct evidence

- Primary analysis is based on RCTs that do not have major flaws:

Early EN in trauma: Direct evidence

- Primary analysis is based on RCTs that do not have major flaws:

| Moore 1986 | Major abdominal trauma (ATI > 15) | Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8h intervals to target (full strength solution 125ml/h) at 72h 5% dextrose (approx. 100g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time |

Early EN in trauma: Direct evidence

- Primary analysis is based on RCTs that do not have major flaws:
 - Moore et al enrolled **75 patients, but 12 were excluded from analysis within the first 72 hr post-injury because of reoperation (six), death (four), or transfer to another hospital (two).**

| Moore 1986 | Major abdominal trauma (ATI > 15) | Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72h | 5% dextrose (approx. 100g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time |

Early EN in trauma: Direct evidence

- Primary analysis is based on RCTs that do not have major flaws:
 - Moore et al enrolled 75 patients, but 12 were excluded from analysis within the first 72 hr post-injury because of reoperation (six), death (four), or transfer to another hospital (two).
 - We do not know which group these 12 patients were randomised to.

Moore 1986 | Major abdominal trauma (ATI > 15) | Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72h | 5% dextrose (approx. 100g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time

Early EN in trauma: Direct evidence

- Primary analysis is based on RCTs that do not have major flaws:
 - Moore et al enrolled 75 patients, but 12 were excluded from analysis within the first 72 hr post-injury because of reoperation (six), death (four), or transfer to another hospital (two).
 - We do not know which group these 12 patients were randomised to.
 - Excessive loss to follow-up is a major validity flaw.

| Moore 1986 | Major abdominal trauma (ATI > 15) | Within 12–18 h of surgery: EN (Vivonex HN at 1/4 strength) via NJT at 50ml/h. Rate and concentration increased at 8 h intervals to target (full strength solution 125ml/h) at 72 h | 5% dextrose (approx. 100 g/day) during first 5 days post-op and then TPN if not tolerating oral diet at that time |

Primary analysis: RCTs without major flaws

Mortality reduced by 8.3%, p=0.04

Sensitivity analysis: Including Moore et al.

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Early EN (<24 h) n/N</th>
<th>Standard Care n/N</th>
<th>Peto OR 95% CI</th>
<th>Weight %</th>
<th>Peto OR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompan 1999</td>
<td>0/17</td>
<td>2/19</td>
<td>20.45</td>
<td>0.14 [0.01, 2.38]</td>
<td></td>
</tr>
<tr>
<td>Kompan 2004</td>
<td>0/27</td>
<td>1/25</td>
<td>10.54</td>
<td>0.12 [0.00, 6.31]</td>
<td></td>
</tr>
<tr>
<td>Moore 1996 (16%ltf)</td>
<td>1/32</td>
<td>2/31</td>
<td>30.64</td>
<td>0.49 [0.05, 4.85]</td>
<td></td>
</tr>
<tr>
<td>Chuntrasakul 1996</td>
<td>1/21</td>
<td>3/17</td>
<td>38.37</td>
<td>0.26 [0.03, 2.06]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>97</td>
<td>92</td>
<td>100.00</td>
<td>0.26 [0.07, 0.93]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 2 (Early EN (<24 h)), 8 (Standard Care)

Test for heterogeneity: Chi² = 0.59, df = 3 (P = 0.90), I² = 0%

Test for overall effect: Z = 2.08 (P = 0.04)

Mortality reduced by 6.7%, p=0.04
Early EN in trauma: Direct evidence

- Early EN also resulted in:
 - Reduced incidence of pneumonia (33% eEN vs 64%, p=0.050)
 - A trend towards a reduction in the severity of MODS (2.5 vs 3.1 organ failures per patient, p=0.057)

Early EN in trauma: Direct evidence

- Early EN also resulted in:
 - Reduced incidence of pneumonia (33% eEN vs 64%, p=0.050)
 - A trend towards a reduction in the severity of MODS (2.5 vs 3.1 organ failures per patient, p=0.057)

There were no signs of any harms.

Early EN in Upper GI Sx: Indirect evidence
Early EN in Upper GI Sx: Indirect evidence

- A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.
- 13 studies, 1,173 patients

A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.

- 13 studies, 1,173 patients

- Early feeding resulted in a significant decrease in:
 - Mortality (2.4% eEN vs 6.9%, p=0.03)

A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.

13 studies, 1,173 patients

Early feeding resulted in a significant decrease in:

- Mortality (2.4% eEN vs 6.9%, p=0.03)

Early feeding was not associated with any harms:

- Wound infections (7.1% eEN vs 9.3%, p=0.26)
- Anastomotic dehiscence (2.8% eEN vs 4.3%, p=0.27)
- Pneumonia (2.3% eEN vs 3.3%, p=0.46)

A Meta-analysis comparing RCT’s of early feeding (within 24h) versus no feeding in patients undergoing gastrointestinal surgery.

13 studies, 1,173 patients

Early feeding resulted in a significant decrease in:

- Mortality (2.4% eEN vs 6.9%, p=0.03)

Early feeding was not associated with any harms:

- Wound infections (7.1% eEN vs 9.3%, p=0.26)
- Anastomotic dehiscence (2.8% eEN vs 4.3%, p=0.27)
- Pneumonia (2.3% eEN vs 3.3%, p=0.46)

“There is no obvious benefit for keeping patients “nil by mouth” after gastrointestinal surgery”

A special case: The Open Abdomen

“deliberately leaving a laparotomy wound open is now the standard of care in clinical situations that require either planned reoperations or decompression of intra-abdominal hypertension”

A special case: The Open Abdomen

“deliberately leaving a laparotomy wound open is now the standard of care in clinical situations that require either planned reoperations or decompression of intra-abdominal hypertension”

- **Planned re-operation:** Damage control surgery or management of severe abdominal infection
- **Decompression of intra-abdominal hypertension:** Repair of a ruptured abdominal aortic aneurysm or decompressive laparotomy for abdominal compartment syndrome
- **Less commonly:** septic dehiscence of a laparotomy incision or partial loss of the abdominal wall prohibit definitive closure, resulting in an open abdomen

A special case: The Open Abdomen

“deliberately leaving a laparotomy wound open is now the **standard of care** in clinical situations that require either planned reoperations or decompression of intra-abdominal hypertension”

- **Planned re-operation:** Damage control surgery or management of severe abdominal infection
- **Decompression of intra-abdominal hypertension:** Repair of a ruptured abdominal aortic aneurysm or decompressive laparotomy for abdominal compartment syndrome
- **Less commonly:** septic dehiscence of a laparotomy incision or partial loss of the abdominal wall prohibit definitive closure, resulting in an open abdomen
Feeding the Open Abdomen: Dogma?

Feeding the Open Abdomen: Dogma?

- Fear of bowel oedema and ileus, with subsequent aspiration pneumonia.

Feeding the Open Abdomen: Dogma?

- Fear of bowel oedema and ileus, with subsequent aspiration pneumonia.
- Fear of inducing small bowel necrosis by stressing an underperfused bowel.

Fear of bowel oedema and ileus, with subsequent aspiration pneumonia.

Fear of inducing small bowel necrosis by stressing an underperfused bowel.

Fear of increasing bowel distension, making it harder for the surgeon to obtain fascial closure.

Feeding the Open Abdomen: Dogma?

- Fear of bowel oedema and ileus, with subsequent aspiration pneumonia.
- Fear of inducing small bowel necrosis by stressing an underperfused bowel.
- Fear of increasing bowel distension, making it harder for the surgeon to obtain fascial closure.

Therefore many open abdomen patients receive no nutrition until fascial closure.

Should we fear enteral nutrition?
Should we fear enteral nutrition?

Should we fear enteral nutrition?

Observational study reviewing 597 trauma patients from 11 US trauma centres who were managed with open abdomen.

- average age 38, 77% male
- 72% blunt trauma, ISS 31
- 14% mortality and 31 day hospital stay

Observational study reviewing 597 trauma patients from 11 US trauma centres who were managed with open abdomen.

- Average age 38, 77% male
- 72% blunt trauma, ISS 31
- 14% mortality and 31 day hospital stay

92% (549/597) after damage control surgery, 8% (48/597) after abdominal compartment syndrome

Should we fear enteral nutrition?

Observational study reviewing 597 trauma patients from 11 US trauma centres who were managed with open abdomen.

- average age 38, 77% male
- 72% blunt trauma, ISS 31
- 14% mortality and 31 day hospital stay

92% (549/597) after damage control surgery, 8% (48/597) after abdominal compartment syndrome

49% (292/597) had full thickness bowel injuries, with direct repair, anastomosis or colostomy performed

Should we fear enteral nutrition?

Observational study reviewing 597 trauma patients from 11 US trauma centres who were managed with open abdomen.

- average age 38, 77% male
- 72% blunt trauma, ISS 31
- 14% mortality and 31 day hospital stay

92% (549/597) after damage control surgery, 8% (48/597) after abdominal compartment syndrome

49% (292/597) had full thickness bowel injuries, with direct repair, anastomosis or colostomy performed

39% (232/597) received EN before first attempt at closure of the abdomen

Should we fear enteral nutrition?

- Intention to treat analysis for all 597 patients.

Should we fear enteral nutrition?

- Intention to treat analysis for all 597 patients.
- Controlling for hospital, ISS, mechanism of injury, closure at second laparotomy, total 24-hr infused volume and presence of bowel injury, patients who received EN before first attempt at closure experienced:

Should we fear enteral nutrition?

- Intention to treat analysis for all 597 patients.

- Controlling for hospital, ISS, mechanism of injury, closure at second laparotomy, total 24-hr infused volume and presence of bowel injury, patients who received EN before first attempt at closure experienced:
 - Significantly higher ultimate fascial closure rates (OR 2.1, p<0.01);

Should we fear enteral nutrition?

- Intention to treat analysis for all 597 patients.
- Controlling for hospital, ISS, mechanism of injury, closure at second laparotomy, total 24-hr infused volume and presence of bowel injury, patients who received EN before first attempt at closure experienced:
 - Significantly higher ultimate fascial closure rates (OR 2.1, p<0.01);
 - There was no difference in complication rates (OR 0.9, p=0.68) and;

Should we fear enteral nutrition?

- Intention to treat analysis for all 597 patients.
- Controlling for hospital, ISS, mechanism of injury, closure at second laparotomy, total 24-hr infused volume and presence of bowel injury, patients who received EN before first attempt at closure experienced:
 - Significantly higher ultimate fascial closure rates (OR 2.1, p<0.01);
 - There was no difference in complication rates (OR 0.9, p=0.68) and;
 - Significantly lower mortality (OR 0.4, p=0.01).

Should we fear enteral nutrition?

• Intention to treat analysis for all 597 patients.
• Controlling for hospital, ISS, mechanism of injury, closure at second laparotomy, total 24-hr infused volume and presence of bowel injury, patients who received EN before first attempt at closure experienced:
 • Significantly higher ultimate fascial closure rates (OR 2.1, p<0.01);
 • There was no difference in complication rates (OR 0.9, p=0.68) and;
 • Significantly lower mortality (OR 0.4, p=0.01).

Receiving EN before first attempt at closure resulted in significant improvements in outcome.

Should we fear enteral nutrition?

- 3 other smaller observational studies in open abdomen patients, comparing EN started prior to fascial closure with delayed nutrition

Should we fear enteral nutrition?

- 3 other smaller observational studies in open abdomen patients, comparing EN started prior to fascial closure with delayed nutrition

- Compared with delayed feeding, EN started prior to fascial closure was associated with:
 - Reduced rates of pneumonia
 - Higher rates of primary fascia closure
 - Lower rates of fistula
 - Lower total hospital charges

Should we fear enteral nutrition?

- 3 other smaller observational studies in open abdomen patients, comparing EN started prior to fascial closure with delayed nutrition

- Compared with delayed feeding, EN started prior to fascial closure was associated with:
 - Reduced rates of pneumonia
 - Higher rates of primary fascia closure
 - Lower rates of fistula
 - Lower total hospital charges

There were no reported adverse events with the use of EN started prior to fascial closure

Physiology: Why should patients benefit?

Trauma, including isolated head trauma, triggers a hypermetabolic and catabolic state, severely impairing nitrogen (protein) balance.

Characterized by disproportional pro-inflammatory cytokine production (e.g., tumor necrosis factor-α, interleukin-1 and interleukin-6) and release that is associated with increased counter-regulatory hormones (e.g., cortisol, glucagon and catecholamines) release.

This process leads to increased nutrient needs, which begins early and may persist throughout recovery and rehabilitation.
The gut as the motor of MODs

With the onset of critical illness:

- Loss of functional and structural integrity of the intestinal epithelium.

The gut as the motor of MODs

With the onset of critical illness:

- Loss of functional and structural integrity of the intestinal epithelium.
- Reduced contractility promotes bacterial overgrowth.

The gut as the motor of MODs

With the onset of critical illness:

- Loss of functional and structural integrity of the intestinal epithelium.

- Reduced contractility promotes bacterial overgrowth.

- Gut stasis, bacterial overgrowth and loss of structural integrity leads to bacterial translocation (even more bacterial cross intestinal barrier!!!).

The gut as the motor of MODs

With the onset of critical illness:

- Loss of functional and structural integrity of the intestinal epithelium.
- Reduced contractility promotes bacterial overgrowth.
- Gut stasis, bacterial overgrowth and loss of structural integrity leads to bacterial translocation (*even more* bacterial cross intestinal barrier!!!).
- Gut neutrophils become ‘primed’ and release cytokines into lymphatic drainage and also may travel to distant sites
 - Increases overall oxidative stress, predisposing to infection and MODs

Summary

• Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients

Summary

- Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients
 - Significant reduction in mortality, VAP and severity of MODs

Summary

• Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients
 • Significant reduction in mortality, VAP and severity of MODs
• Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.

Summary

• Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients
 • Significant reduction in mortality, VAP and severity of MODs
 • Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.
 • EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated

Summary

• Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients
 • Significant reduction in mortality, VAP and severity of MODs
• Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.
 • EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated
 • 9,000 RMB per patient savings using local costs of ICU care

Summary

• Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients
 • Significant reduction in mortality, VAP and severity of MODs
 • Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.
 • EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated
 • 9,000 RMB per patient savings using local costs of ICU care
 • EN should begin within 24 h of injury, as soon as shock is stabilised:

Summary

- Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients
 - Significant reduction in mortality, VAP and severity of MODs
 - Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.
 - EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated
 - 9,000 RMB per patient savings using local costs of ICU care
 - EN should begin within 24 h of injury, as soon as shock is stabilised:
 - Shock Index ≤ 1 (Heart rate / SBP) for one hour or
 - SBP > 100 mmHg without need for increasing doses of vasoactive agents for one hour.

Summary

• Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports the benefits of early EN for trauma patients
 • Significant reduction in mortality, VAP and severity of MODs
• Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.
 • EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated
 • 9,000 RMB per patient savings using local costs of ICU care
• EN should begin within 24 h of injury, as soon as shock is stabilised:
 • Shock Index ≤ 1 (Heart rate / SBP) for one hour or
 • SBP > 100 mmHg without need for increasing doses of vasoactive agents for one hour.

Stable shock is not defined by weaning or removing all vasoactive agents.
Assorted loose ends
Assorted loose ends

• Rates and Targets
Assorted loose ends

• Rates and Targets
 • There is no robust evidence to mandate specific rates or goals.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.

Assorted loose ends

- Rates and Targets
 - There is no robust evidence to mandate specific rates or goals.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.
- Gut Dysmotility

Assorted loose ends

- Rates and Targets
 - There is no robust evidence to mandate specific rates or goals.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.
- Gut Dysmotility
 - Mounting evidence suggests we create gut dysmotility by feeding late.

Rates and Targets
- There is no robust evidence to mandate specific rates or goals.
- In general, start slow and achieve reasonable goals within 3 to 7 days.

Gut Dysmotility
- Mounting evidence suggests we create gut dysmotility by feeding late.
- If you are concerned, place a post-pyloric tube.

Assorted loose ends

- Rates and Targets
 - There is no robust evidence to mandate specific rates or goals.
 - In general, start slow and achieve reasonable goals within 3 to 7 days.

- Gut Dysmotility
 - Mounting evidence suggests we create gut dysmotility by feeding late.
 - If you are concerned, place a post-pyloric tube.
 - Do not allow the placement of a post-pyloric tube to delay or interrupt EN.

Assorted loose ends

• Rates and Targets
 • There is no robust evidence to mandate specific rates or goals.
 • In general, start slow and achieve reasonable goals within 3 to 7 days.

• Gut Dysmotility
 • Mounting evidence suggests we create gut dysmotility by feeding late.
 • If you are concerned, place a post-pyloric tube.
 • Do not allow the placement of a post-pyloric tube to delay or interrupt EN.

• Role of Parenteral Nutrition

Rates and Targets

- There is no robust evidence to mandate specific rates or goals.
- In general, start slow and achieve reasonable goals within 3 to 7 days.

Gut Dysmotility

- Mounting evidence suggests we create gut dysmotility by feeding late.
- If you are concerned, place a post-pyloric tube.
- Do not allow the placement of a post-pyloric tube to delay or interrupt EN.

Role of Parenteral Nutrition

- Patients with contraindications to early EN may benefit from early PN.
- PN does not increase infectious complications.

Questions?

- Direct evidence (RCTs in Trauma patients), indirect evidence (RCTs in upper GI Sx), observational studies and physiology supports *the benefits of early EN for trauma patients*
 - Significant reduction in mortality, VAP and severity of MODs
- Full economic analyses based on large-scale Monte Carlo simulations of stochastic cost models demonstrate clinical benefits can be achieved whilst at the same time reducing costs.
 - EN US$14,462 (95% CI $5,464 to $23,669) savings per patient treated
 - 9,000 RMB per patient savings using local costs of ICU care
- EN should begin within 24 h of injury, as soon as shock is stabilised:
 - Shock Index ≤ 1 (Heart rate / SBP) for one hour or
 - SBP > 100 mmHg without need for *increasing* doses of vasoactive agents for one hour.

Stable shock is not defined by weaning or removing all vasoactive agents.

www.EvidenceBased.net
Key papers

- Demonstrates strength of acceptance of the importance of early feeding by trauma surgeons.

- Extensive search and systematic review of best available evidence for early EN in trauma.

- Major multi-centre observational study demonstrating patients often assumed to be ‘most difficult to feed’ benefit from early EN.

- Major RCT demonstrating PN does NOT increase infections and improves patient outcomes.